Fuzzy subset: Difference between revisions
imported>Giangiacomo Gerla |
imported>Giangiacomo Gerla |
||
Line 16: | Line 16: | ||
In such a case <math>([0,1]^F, \cup, \cap, -, \emptyset, S)</math> is a complete, completely distributive lattice with an involution. Several authors prefer to consider different operations, as an example to assume that <math>\otimes</math> is a triangular norm in [0,1] and that <math>\oplus </math> is the corresponding triangular co-norm. | In such a case <math>([0,1]^F, \cup, \cap, -, \emptyset, S)</math> is a complete, completely distributive lattice with an involution. Several authors prefer to consider different operations, as an example to assume that <math>\otimes</math> is a triangular norm in [0,1] and that <math>\oplus </math> is the corresponding triangular co-norm. | ||
In all the cases the interpretation of a logical connective is ''conservative'' in the sense that its restriction to {0,1} coincides with the classical one. This entails that the map associating any subset ''X'' of a set ''S'' with the related characteristic function is an embedding of the Boolean algebra <math>({0,1}^S, \cup, \cap, -, \emptyset, S)</math> into the algebra <math>(L^S, \cup, \cap, -, \emptyset, S)</math>. | In all the cases the interpretation of a logical connective is ''conservative'' in the sense that its restriction to {0,1} coincides with the classical one. This entails that the map associating any subset ''X'' of a set ''S'' with the related characteristic function is an embedding of the Boolean algebra <math>(\{0,1\}^S, \cup, \cap, -, \emptyset, S)</math> into the algebra <math>(L^S, \cup, \cap, -, \emptyset, S)</math>. |
Revision as of 04:00, 2 January 2009
Some set-theoretical notions for fuzzy subsets
In classical mathematics the definitions of union, intersection and complement are related with the interpretation of the basic logical connectives . In order to define the same operations for fuzzy subsets, we have to fix suitable operations and ~ in L to interpret these connectives. Once this was done, we can set
- ,
- ,
- .
In such a way an algebraic structure is defined and this structure is the direct power of the structure ~,0 ,1) with index set S.
In Zadeh's original papers the operations , ~ are defined by setting for every x and y in [0,1]:
- = min(x, y) ; = max(x,y) ; = 1-x.
In such a case is a complete, completely distributive lattice with an involution. Several authors prefer to consider different operations, as an example to assume that is a triangular norm in [0,1] and that is the corresponding triangular co-norm.
In all the cases the interpretation of a logical connective is conservative in the sense that its restriction to {0,1} coincides with the classical one. This entails that the map associating any subset X of a set S with the related characteristic function is an embedding of the Boolean algebra into the algebra .