Resultant (algebra): Difference between revisions
imported>Richard Pinch (subpages) |
imported>Richard Pinch m (typo) |
||
Line 1: | Line 1: | ||
{{subpages} | {{subpages}} | ||
In [[algebra]], the '''resultant''' of two polynomials is a quantity which determines whether or not they have a [[factor]] in common. | In [[algebra]], the '''resultant''' of two polynomials is a quantity which determines whether or not they have a [[factor]] in common. | ||
Revision as of 16:58, 21 December 2008
In algebra, the resultant of two polynomials is a quantity which determines whether or not they have a factor in common.
Given polynomials
and
with roots
respectively, the resultant R(f,g) with respect to the variable x is defined as
The resultant is thus zero if and only if f and g have a common root.
Sylvester matrix
The Sylvester matrix attached to f and g is the square (m+n)×(m+n) matrix
in which the coefficients of f occupy m rows and those of g occupy n rows.
The determinant of the Sylvester matrix is the resultant of f and g.
The rows of the Sylvester matrix may be interpreted as the coefficients of the polynomials
and expanding the determinant we see that
with a and b polynomials of degree at most m-1 and n-1 respectively, and R a scalar. If f and g have a polynomial common factor this must divide R and so R must be zero. Conversely if R is zero, then f/g = - b/a so f/g is not in lowest terms and f and g have a common factor.
References
- J.W.S. Cassels (1991). Lectures on Elliptic Curves. Cambridge University Press. ISBN 0-521-42530-1. Chapter 16.
- Serge Lang (1993). Algebra, 3rd ed. Addison-Wesley, 200-204. ISBN 0-201-55540-9.