User:John R. Brews/Sample: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
No edit summary
imported>John R. Brews
No edit summary
Line 20: Line 20:
The vector potential is:
The vector potential is:
:<math>\boldsymbol A(\boldsymbol r , \ t) =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ . </math>
:<math>\boldsymbol A(\boldsymbol r , \ t) =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ . </math>
With these potentials the electric field and the magnetic flux density are found to be (dots over symbols are time derivatives):<ref name=Melia/>
:<math>\boldsymbol E ( \boldsymbol r , \ t) = q \left[ \frac{
\mathbf{\hat u}-\boldsymbol \beta (1-\beta^2)
}{(1-\mathbf{\hat u} \mathbf{\cdot} \boldsymbol \beta )^3 R^2} + \frac{\mathbf{\hat u \ \mathbf{\times} \ } [(\hat\mathbf u-\boldsymbol \beta )\ \mathbf{\times} \ \boldsymbol {\dot \beta} ]}{c(1-\mathbf{\hat u \cdot}\boldsymbol \beta )^3 R} \right ] 
</math>
:<math>\boldsymbol B(\boldsymbol r , \ t) = \boldsymbol {\hat u \ \times}\ \boldsymbol E \ . </math>


==Notes==
==Notes==

Revision as of 16:03, 23 April 2011

Liénard–Wiechert potentials


Define β in terms of the velocity of a point charge at time t as:

and unit vector û as

where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:[1]

where the tilde ~ denotes evaluation at the retarded time ,

c being the speed of light and rO being the location of the particle on its trajectory.

The vector potential is:

With these potentials the electric field and the magnetic flux density are found to be (dots over symbols are time derivatives):[1]


Notes

  1. 1.0 1.1 Fulvio Melia (2001). “§4.6.1 Point currents and Liénard-Wiechert potentials”, Electrodynamics. University of Chicago Press, pp. 101. ISBN 0226519570. 

Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description