User:John R. Brews/Forces: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
imported>John R. Brews
Line 39: Line 39:
|width=200
|width=200
|lines=5
|lines=5
|Polar coordinates.png|Polar coordinates (''R'', θ).
|Changing coordinates.png|Locating a particle in two coordinate systems, S and S'.
|Changing coordinates.png|Locating a particle in two coordinate systems, S and S'.
|Uniform circular motion.png|Changing velocity direction in circular motion at constant speed implies a radially inward acceleration.
|Uniform circular motion.png|Changing velocity direction in circular motion at constant speed implies a radially inward acceleration.

Revision as of 11:30, 27 September 2011

Forces

Forces
Force and its equivalent force and couple
(CC) Image: John R. Brews
Force and its equivalent force and couple
Centripetal force FC upon an object held in circular motion by a string of length R. The string is under tension FT, as shown separately to the left.
(PD) Image: John R. Brews
Centripetal force FC upon an object held in circular motion by a string of length R. The string is under tension FT, as shown separately to the left.
Upper panel: Ball on a banked circular track moving with constant speed v; Lower panel: Forces on the ball.
(PD) Image: John R. Brews
Upper panel: Ball on a banked circular track moving with constant speed v; Lower panel: Forces on the ball.
Polar unit vectors at two times t and t + dt for a particle with trajectory r ( t ); on the left the unit vectors uρ and uθ at the two times are moved so their tails all meet, and are shown to trace an arc of a unit radius circle.
(PD) Image: John R. Brews
Polar unit vectors at two times t and t + dt for a particle with trajectory r ( t ); on the left the unit vectors uρ and uθ at the two times are moved so their tails all meet, and are shown to trace an arc of a unit radius circle.
Local coordinate system for planar motion on a curve.
(PD) Image: John R. Brews
Local coordinate system for planar motion on a curve.
Exploded view of rotating spheres in an inertial frame of reference showing the centripetal forces on the spheres provided by the tension in a rope tying them together.
(PD) Image: John R. Brews
Exploded view of rotating spheres in an inertial frame of reference showing the centripetal forces on the spheres provided by the tension in a rope tying them together.
Rotating spheres subject to centrifugal (outward) force in a co-rotating frame in addition to the (inward) tension from the rope.
(PD) Image: John R. Brews
Rotating spheres subject to centrifugal (outward) force in a co-rotating frame in addition to the (inward) tension from the rope.
The "whirling table". The rod is made to rotate about the axis and (from the bead's viewpoint) the centrifugal force acting on the sliding bead is balanced by the weight attached by a cord over two pulleys.
(PD) Image: John R. Brews
The "whirling table". The rod is made to rotate about the axis and (from the bead's viewpoint) the centrifugal force acting on the sliding bead is balanced by the weight attached by a cord over two pulleys.
Force diagram for an element of water surface in co-rotating frame.
(PD) Image: John R. Brews
Force diagram for an element of water surface in co-rotating frame.
An object located at xA in inertial frame A is located at location xB in accelerating frame B.
(PD) Image: John R. Brews
An object located at xA in inertial frame A is located at location xB in accelerating frame B.
An orbiting but fixed orientation coordinate system B, shown at three different times.
(PD) Image: John R. Brews
An orbiting but fixed orientation coordinate system B, shown at three different times.
An orbiting coordinate system B in which unit vectors uj, j = 1, 2, 3 rotate to face the rotational axis.
(PD) Image: John R. Brews
An orbiting coordinate system B in which unit vectors uj, j = 1, 2, 3 rotate to face the rotational axis.
Crossing a rotating carousel walking at constant speed, a spiral is traced out in the inertial frame, while a simple straight radial path is seen in the frame of the carousel.
Crossing a rotating carousel walking at constant speed, a spiral is traced out in the inertial frame, while a simple straight radial path is seen in the frame of the carousel.
Rotating shaft unbalanced by two identical attached weights. Image
(PD) Image: John R. Brews
Rotating shaft unbalanced by two identical attached weights. Image
Torque vector T representing a force couple.
(PD) Image: John R. Brews
Torque vector T representing a force couple.
An ellipsoid showing its axes
(PD) Image: John R. Brews
An ellipsoid showing its axes
While the pendulum P swings in a fixed plane about its hanger at H, the planes of the Earth observer rotate.
(PD) Image: John R. Brews
While the pendulum P swings in a fixed plane about its hanger at H, the planes of the Earth observer rotate.
As time progresses each unit vector's change is orthogonal to it.
(PD) Image: John R. Brews
As time progresses each unit vector's change is orthogonal to it.
Tossed ball on carousel. At the center of the carousel, the path is a straight line for a stationary observer, and is an arc for a rotating observer.
(PD) Image: John R. Brews
Tossed ball on carousel. At the center of the carousel, the path is a straight line for a stationary observer, and is an arc for a rotating observer.
From the center of curvature of the path, the ball executes approximate circular motion.
(PD) Image: John R. Brews
From the center of curvature of the path, the ball executes approximate circular motion.
Some useful notation for the ball toss on a carousel.
(PD) Image: John R. Brews
Some useful notation for the ball toss on a carousel.
The ball follows a nearly circular path about the center of curvature.
(PD) Image: John R. Brews
The ball follows a nearly circular path about the center of curvature.
The inertial forces on the ball combine to provide the resultant centripetal force required by Newton's laws for circular motion.
(PD) Image: John R. Brews
The inertial forces on the ball combine to provide the resultant centripetal force required by Newton's laws for circular motion.
Stats for a particular path of ball toss.
(PD) Image: John R. Brews
Stats for a particular path of ball toss.
Tangent-plane coordinate system on rotating Earth at latitude φ.
(PD) Image: John R. Brews
Tangent-plane coordinate system on rotating Earth at latitude φ.
Wind motion in direction of pressure gradient is deflected by the Coriolis force.
(PD) Image: John R. Brews
Wind motion in direction of pressure gradient is deflected by the Coriolis force.
In the northern hemisphere, Coriolis force forms a counterclockwise flow.
(PD) Image: John R. Brews
In the northern hemisphere, Coriolis force forms a counterclockwise flow.
Path of ball for four rates of rotation. Catcher positioned so the catch is made at 12 o'clock in all cases.
(PD) Image: John R. Brews
Path of ball for four rates of rotation. Catcher positioned so the catch is made at 12 o'clock in all cases.
A fluid forced through a rocking tube experiences a Coriolis acceleration.
(PD) Image: John R. Brews
A fluid forced through a rocking tube experiences a Coriolis acceleration.
Forces
Polar coordinates (R, θ).
(PD) Image: John R. Brews
Polar coordinates (R, θ).
Locating a particle in two coordinate systems, S and S'.
(PD) Image: John R. Brews
Locating a particle in two coordinate systems, S and S'.
Changing velocity direction in circular motion at constant speed implies a radially inward acceleration.
(PD) Image: John R. Brews
Changing velocity direction in circular motion at constant speed implies a radially inward acceleration.

Particles

Particles
The fundamental particles and messenger quanta of the Standard Model.
(PD) Image: John R. Brews
The fundamental particles and messenger quanta of the Standard Model.
A neutron and proton trade identities by exchange of a π− in the Yukawa model.
(PD) Image: John R. Brews
A neutron and proton trade identities by exchange of a π in the Yukawa model.