User:John R. Brews/Draft: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
No edit summary
 
(186 intermediate revisions by one other user not shown)
Line 1: Line 1:
<br>
{{AccountNotLive}}
{{TOC|right}}
{{TOC|right}}
==Coordinate system==


A '''semiconductor diode''' is a two-terminal device that conducts current in only one direction, made by joining a ''p''-type semiconducting layer to an ''n''-type semiconducting layer.
The coordinates of a point '''r''' in an ''n''-dimensional real numerical space ℝ<sup>n</sup> or a complex ''n''-space ℂ<sup>n</sup>  are simply an ordered set of ''n'' real or complex numbers:<ref name=Korn>


==Electrical behavior==
{{cite book |title=Mathematical handbook for scientists and engineers : definitions, theorems, and formulas for reference and review |author=Granino Arthur Korn, Theresa M. Korn |pages=p. 169 |url=http://books.google.com/books?id=xHNd5zCXt-EC&pg=PA169&dq=curvilinear+%22coordinate+system%22&lr=&as_brr=0&sig=ACfU3U3psSqwpBtA3U40e46VPPaMNMEw4g#PPA169,M1
{{Image|Nonideal diode current-voltage behavior.PNG|right|250px|Nonideal ''pn''-diode current-voltage characteristics.}}
|isbn=0486411478 |year=2000 |publisher=Courier Dover Publications}}
The ideal diode has zero resistance for the ''forward bias polarity'', and infinite resistance (conducts zero current) for the ''reverse voltage polarity''. The ''pn-diode'' is not ideal. As shown in the figure, the diode does not conduct appreciably until a nonzero ''knee voltage'' (also called the ''turn-on voltage'') is reached. Above this voltage the slope of the current-voltage curve is not infinite, but exhibits a nonzero forward resistance. In the reverse direction the diode conducts a nonzero leakage current (exaggerated by a smaller scale in the figure) and at a sufficiently large reverse voltage below the ''breakdown voltage'' the current increases very rapidly with more negative reverse voltages.


==Types==
</ref><ref name=Morita>
Semiconductor diodes come in a large variety of types:
*''pn''-diode: The ''pn'' junction diode consists of an ''n''-type semiconductor joined to a ''p''-type semiconductor.
*Zener diode: The [[Zener diode]] is a special type of ''pn''-diode made to operate in the reverse breakdown region, and used often as a voltage regulator. The breakdown voltage in these didoes is sometimes called the ''Zener voltage''. Depending upon the voltage range designed for, the diode may break down by either [[Zener breakdown]], an [[electron tunneling]] behavior, or by [[avalanche breakdown]].
*Schottky diode: The [[Schottky diode]] is made using a metal such as aluminum or platinum, on a lightly doped semiconductor substrate.
*Metal-oxide varistor: The [[varistor]] is intended to provide a voltage controlled resistance. Its resistance under small voltage variations is set by the choice of a bias voltage.
*Tunnel diode: Like the Zener diode, the [[tunnel diode]] (or Esaki diode)is made up of heavily doped ''n-'' and ''p''-type layers with a very abrupt transition between the two types. Conduction takes place by electron tunneling.
*Light-emitting diode: The [[Light Emitting Diode|light-emitting diode]] is designed to convert electrical current into light.
*''pin''-diode: The ''pin''-diode is made of three layers: an intrinsic (undoped) layer between the ''p'- and ''n''-type layers. Because of its rapid switching characteristicsit is used in microwave and radio-frequency applications.
*''Gunn diode'': The [[Gunn diode]] is a ''transferred electron device''  based upon the [[Gunn effect]] in III-V semiconductors, and is used to generate microwave oscillations.


==Operation==
[http://books.google.com/books?id=5N33Of2RzjsC&pg=PA12&dq=geometry++axiom+%22coordinate+system%22&lr=&as_brr=0&sig=ACfU3U3Vi7xsLiYiWCK0erF6X2gczHOkJA#v=onepage&q&f=false Morita]
Here, the operation of the simple ''pn'' junction diode is considered. The objective is to explain the various bias regimes in the figure.
 
</ref><ref name=Fritzche>
 
[http://books.google.com/books?id=jSeRz36zXIMC&pg=PA155&dq=complex+%22coordinate+system%22&hl=en&ei=LA2JTYD1MYfWtQP2j92NDA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCkQ6AEwAA#v=onepage&q=complex%20%22coordinate%20system%22&f=false Fritzche]</ref>
:<math>\mathbf{r} =[x^1,\ x^2,\ \dots\ ,  x^n] \ .</math>
Coordinate surfaces, coordinate lines, and [[Basis (linear algebra)|basis vectors]] are components of a '''coordinate system'''.<ref name=Zdunkowski>{{cite book |title=Dynamics of the Atmosphere |page=84  |isbn=052100666X |year=2003 |author=Wilford Zdunkowski & Andreas Bott |publisher=Cambridge University Press |url=http://books.google.com/books?id=GuYvC21v3g8C&pg=RA1-PA84&dq=%22curvilinear+coordinate+system%22&lr=&as_brr=0&sig=ACfU3U2g2k7kY5u-CVcJ1pH5ZxsbEb9Rig  }}</ref>
 
==Manifolds==
A coordinate system in mathematics is a facet of [[geometry]] or of [[algebra]], in particular, a property of [[Manifold (geometry)|manifold]]s (for example, in physics, [[configuration space]]s or [[phase space]]s).<ref name=Hawking>
 
According to Hawking and Ellis: "A manifold is a space locally similar to Euclidean space in that it can be covered by coordinate patches. This structure allows differentiation to be defined, but does not distinguish between different coordinate systems. Thus, the only concepts defined by the manifold structure are those that are independent of the choice of a coordinate system." {{cite book |title=The Large Scale Structure of Space-Time |author=Stephen W. Hawking & George Francis Rayner Ellis |isbn=0521099064 |year=1973 |publisher=Cambridge University Press |pages=p. 11 |url=http://books.google.com/books?id=QagG_KI7Ll8C&pg=PA59&dq=manifold+%22The+Large+Scale+Structure+of+Space-Time%22&lr=&as_brr=0&sig=ACfU3U1q-iaRTBDo6J8HMEsyPeFi8cJNWg#PPA11,M1
}} A mathematical definition is: ''A connected [[Hausdorff space]] ''M'' is called an ''n''-dimensional manifold if each point of ''M'' is contained in an open set that is homeomorphic to an open set in Euclidean ''n''-dimensional space.''
 
</ref><ref name=Morita>
 
{{cite book |title=Geometry of Differential Forms |author=Shigeyuki Morita, Teruko Nagase, Katsumi Nomizu |pages=p. 12 |url=http://books.google.com/books?id=5N33Of2RzjsC&pg=PA12&dq=geometry++axiom+%22coordinate+system%22&lr=&as_brr=0&sig=ACfU3U3Vi7xsLiYiWCK0erF6X2gczHOkJA#PPA12,M1
|isbn=0821810456 |year=2001 |publisher=American Mathematical Society Bookstore  }}
 
</ref> The coordinates of a point '''r''' in an ''n''-dimensional space are simply an ordered set of ''n'' numbers:<ref name=Korn>
 
{{cite book |title=Mathematical handbook for scientists and engineers : definitions, theorems, and formulas for reference and review |author=Granino Arthur Korn, Theresa M. Korn |pages=p. 169 |url=http://books.google.com/books?id=xHNd5zCXt-EC&pg=PA169&dq=curvilinear+%22coordinate+system%22&lr=&as_brr=0&sig=ACfU3U3psSqwpBtA3U40e46VPPaMNMEw4g#PPA169,M1
|isbn=0486411478 |year=2000 |publisher=Courier Dover Publications}}
 
</ref>
:<math>\mathbf{r} =[x^1,\ x^2,\ \dots\ ,  x^n] \ .</math>
 
In a general [[Banach space]], these numbers could be (for example) coefficients in a functional expansion like a [[Fourier series]]. In a physical problem, they could be [[spacetime]] coordinates or [[normal mode]] amplitudes. In a [[Robotics|robot design]], they could be angles of relative rotations, linear displacements, or deformations of [[linkage (mechanical)|joints]].<ref name=Yamane>
 
{{cite book |author=Katsu Yamane |title=Simulating and Generating Motions of Human Figures |isbn=3540203176 |year=2004 |publisher=Springer  |pages=12–13 |url=http://books.google.com/books?id=tNrMiIx3fToC&pg=PA12&dq=generalized+coordinates+%22kinematic+chain%22&lr=&as_brr=0&sig=ACfU3U3LRGJJTAHs21CHdOvuu08vw0cAuw#PPA13,M1  }}
 
</ref> Here we will suppose these coordinates can be related to a [[Cartesian coordinate]] system by a set of functions:
:<math>x^j = x^j (x,\  y,\  z,\  \dots)\ , </math>&ensp; &ensp; <math> j = 1, \ \dots \ , \ n\  </math>
 
where ''x'', ''y'', ''z'', ''etc.'' are the ''n'' Cartesian coordinates of the point. Given these functions,  '''coordinate surfaces''' are defined by the relations:
 
:<math> x^j (x, y, z, \dots) = \mathrm{constant}\ , </math>&ensp; &ensp; <math> j = 1, \ \dots \ , \ n\  .</math>
 
The intersection of these surfaces define '''coordinate lines'''. At any selected point, tangents to the intersecting coordinate lines at that point define a set of '''basis vectors''' {'''e'''<sub>1</sub>, '''e'''<sub>2</sub>, …, '''e'''<sub>n</sub>} at that point. That is:
 
:<math>\mathbf{e}_i(\mathbf{r}) =\lim_{\epsilon \rightarrow 0} \frac{\mathbf{r}\left(x^1,\  \dots,\  x^i+\epsilon,\  \dots ,\  x^n \right) - \mathbf{r}\left(x^1,\  \dots,\  x^i,\  \dots ,\  x^n \right)}{\epsilon }\ ,</math>
 
which can be normalized to be of unit length. For more detail see [[curvilinear coordinates]].
 
Coordinate surfaces, coordinate lines, and [[Basis (linear algebra)|basis vectors]] are components of a '''coordinate system'''.<ref name=Zdunkowski>{{cite book |title=Dynamics of the Atmosphere |page=84  |isbn=052100666X |year=2003 |author=Wilford Zdunkowski & Andreas Bott |publisher=Cambridge University Press |url=http://books.google.com/books?id=GuYvC21v3g8C&pg=RA1-PA84&dq=%22curvilinear+coordinate+system%22&lr=&as_brr=0&sig=ACfU3U2g2k7kY5u-CVcJ1pH5ZxsbEb9Rig  }}</ref> If the basis vectors are orthogonal at every point, the coordinate system is an [[Orthogonal coordinates|orthogonal coordinate system]].
 
An important aspect of a coordinate system is its [[Metric (mathematics)|metric]] ''g''<sub>ik</sub>, which determines the [[arc length]] ''ds'' in the coordinate system in terms of its coordinates:<ref name=Borisenko>{{cite book |title=Vector and Tensor Analysis with Applications |author= A. I. Borisenko, I. E. Tarapov, Richard A. Silverman |page=86 |url=http://books.google.com/books?id=CRIjIx2ac6AC&pg=PA86&dq=coordinate+metric&lr=&as_brr=0&sig=ACfU3U1osXaT2hg7Md57cJ9katl3ttL43Q
|isbn=0486638332 |publisher=Courier Dover Publications |year=1979 |pages=pp. 86 ''ff'' |chapter=§2.8.4 Arc length. Metric coefficients |edition=Reprint of Prentice-Hall 1968 ed  }}</ref>
 
:<math>(ds)^2 = g_{ik}\ dx^i\ dx^k \ , </math>
 
where repeated indices are summed over.
 
As is apparent from these remarks, a coordinate system is a mathematical construct, part of an [[axiomatic system]]. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can be used to describe motion by interpreting one coordinate as time. Thus, [[Lorentz transformation]]s and [[Galilean transformation]]s may be viewed as [[coordinate transformation]]s.
 
 
==Notes==
<references/>
[http://books.google.com/books?id=hUWEXphqLo8C&pg=PA111&dq=manifold+%22coordinate+system%22&hl=en&ei=I5GGTbWsPIz2tgOmoIzoAQ&sa=X&oi=book_result&ct=result&resnum=5&ved=0CEQQ6AEwBA#v=onepage&q=manifold%20%22coordinate%20system%22&f=false Choquet-Bruhat]
[http://books.google.com/books?id=sRaSuentwngC&pg=PA2&dq=manifold+%22coordinate+system%22&hl=en&ei=I5GGTbWsPIz2tgOmoIzoAQ&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDIQ6AEwAQ#v=onepage&q=manifold%20%22coordinate%20system%22&f=false Bishop]
[http://books.google.com/books?id=CGk1eRSjFIIC&pg=PA3&dq=manifold+%22coordinate+system%22&hl=en&ei=I5GGTbWsPIz2tgOmoIzoAQ&sa=X&oi=book_result&ct=result&resnum=7&ved=0CE8Q6AEwBg#v=onepage&q=manifold%20%22coordinate%20system%22&f=false O'Neill]
[http://books.google.com/books?id=iaeUqc2yQVQC&pg=PA31&dq=manifold+%22coordinate+system%22&hl=en&ei=I5GGTbWsPIz2tgOmoIzoAQ&sa=X&oi=book_result&ct=result&resnum=9&ved=0CFgQ6AEwCA#v=onepage&q=manifold%20%22coordinate%20system%22&f=false Warner]

Latest revision as of 04:07, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Coordinate system

The coordinates of a point r in an n-dimensional real numerical space ℝn or a complex n-space ℂn are simply an ordered set of n real or complex numbers:[1][2][3]

Coordinate surfaces, coordinate lines, and basis vectors are components of a coordinate system.[4]

Manifolds

A coordinate system in mathematics is a facet of geometry or of algebra, in particular, a property of manifolds (for example, in physics, configuration spaces or phase spaces).[5][2] The coordinates of a point r in an n-dimensional space are simply an ordered set of n numbers:[1]

In a general Banach space, these numbers could be (for example) coefficients in a functional expansion like a Fourier series. In a physical problem, they could be spacetime coordinates or normal mode amplitudes. In a robot design, they could be angles of relative rotations, linear displacements, or deformations of joints.[6] Here we will suppose these coordinates can be related to a Cartesian coordinate system by a set of functions:

   

where x, y, z, etc. are the n Cartesian coordinates of the point. Given these functions, coordinate surfaces are defined by the relations:

   

The intersection of these surfaces define coordinate lines. At any selected point, tangents to the intersecting coordinate lines at that point define a set of basis vectors {e1, e2, …, en} at that point. That is:

which can be normalized to be of unit length. For more detail see curvilinear coordinates.

Coordinate surfaces, coordinate lines, and basis vectors are components of a coordinate system.[4] If the basis vectors are orthogonal at every point, the coordinate system is an orthogonal coordinate system.

An important aspect of a coordinate system is its metric gik, which determines the arc length ds in the coordinate system in terms of its coordinates:[7]

where repeated indices are summed over.

As is apparent from these remarks, a coordinate system is a mathematical construct, part of an axiomatic system. There is no necessary connection between coordinate systems and physical motion (or any other aspect of reality). However, coordinate systems can be used to describe motion by interpreting one coordinate as time. Thus, Lorentz transformations and Galilean transformations may be viewed as coordinate transformations.


Notes

  1. 1.0 1.1 Granino Arthur Korn, Theresa M. Korn (2000). Mathematical handbook for scientists and engineers : definitions, theorems, and formulas for reference and review. Courier Dover Publications, p. 169. ISBN 0486411478. 
  2. 2.0 2.1 Morita Cite error: Invalid <ref> tag; name "Morita" defined multiple times with different content
  3. Fritzche
  4. 4.0 4.1 Wilford Zdunkowski & Andreas Bott (2003). Dynamics of the Atmosphere. Cambridge University Press. ISBN 052100666X. 
  5. According to Hawking and Ellis: "A manifold is a space locally similar to Euclidean space in that it can be covered by coordinate patches. This structure allows differentiation to be defined, but does not distinguish between different coordinate systems. Thus, the only concepts defined by the manifold structure are those that are independent of the choice of a coordinate system." Stephen W. Hawking & George Francis Rayner Ellis (1973). The Large Scale Structure of Space-Time. Cambridge University Press, p. 11. ISBN 0521099064.  A mathematical definition is: A connected Hausdorff space M is called an n-dimensional manifold if each point of M is contained in an open set that is homeomorphic to an open set in Euclidean n-dimensional space.
  6. Katsu Yamane (2004). Simulating and Generating Motions of Human Figures. Springer, 12–13. ISBN 3540203176. 
  7. A. I. Borisenko, I. E. Tarapov, Richard A. Silverman (1979). “§2.8.4 Arc length. Metric coefficients”, Vector and Tensor Analysis with Applications, Reprint of Prentice-Hall 1968 ed. Courier Dover Publications, pp. 86 ff. ISBN 0486638332. 

Choquet-Bruhat Bishop O'Neill Warner