Hall-Littlewood polynomial: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (New article, my own wording from Wikipedia) |
mNo edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | |||
In [[mathematics]], the '''Hall–Littlewood polynomials''' encode combinatorial data relating to the [[Group representation|representation]]s of the [[general linear group]]. They are named for [[Philip Hall]] and [[Dudley E. Littlewood]]. | In [[mathematics]], the '''Hall–Littlewood polynomials''' encode combinatorial data relating to the [[Group representation|representation]]s of the [[general linear group]]. They are named for [[Philip Hall]] and [[Dudley E. Littlewood]]. | ||
Line 6: | Line 7: | ||
==References== | ==References== | ||
* {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | * {{cite book | author=I.G. Macdonald | authorlink=Ian G. Macdonald | title=Symmetric Functions and Hall Polynomials | publisher=Oxford University Press | pages=101-104 | year=1979 | isbn=0-19-853530-9 }} | ||
* {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }} | * {{cite journal | author=D.E. Littlewood | title=On certain symmetric functions | journal=Proc. London Math. Soc. | volume=43 | year=1961 | pages=485-498 }}[[Category:Suggestion Bot Tag]] | ||
[[Category: | |||
Latest revision as of 11:00, 25 August 2024
In mathematics, the Hall–Littlewood polynomials encode combinatorial data relating to the representations of the general linear group. They are named for Philip Hall and Dudley E. Littlewood.
See also
References
- I.G. Macdonald (1979). Symmetric Functions and Hall Polynomials. Oxford University Press, 101-104. ISBN 0-19-853530-9.
- D.E. Littlewood (1961). "On certain symmetric functions". Proc. London Math. Soc. 43: 485-498.