Surjective function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (typo)
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
In [[mathematics]], a '''surjective function''' or '''onto function''' or '''surjection''' is a [[function (mathematics)|function]] for which every possible output value occurs for one or more input values: that is, its image is the whole of its codomain.
In [[mathematics]], a '''surjective function''' or '''onto function''' or '''surjection''' is a [[function (mathematics)|function]] for which every possible output value occurs for one or more input values: that is, its image is the whole of its codomain.


Line 6: Line 7:
* [[Bijective function]]
* [[Bijective function]]
* [[Injective function]]
* [[Injective function]]
[[Category:Suggestion Bot Tag]]

Latest revision as of 16:00, 23 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a surjective function or onto function or surjection is a function for which every possible output value occurs for one or more input values: that is, its image is the whole of its codomain.

An surjective function f has an inverse (this requires us to assume the Axiom of Choice). If y is an element of the image set of f, then there is at least one input x such that . We define to be one of these x values. We have for all y in the codomain.

See also