CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
(→‎Papacy: Four color theorem)
imported>John Stephenson
(template)
 
(54 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== '''[[Four color theorem]]''' ==
{{:{{FeaturedArticleTitle}}}}
----
<small>
The '''four color theorem''', sometimes known as the '''four color map theorem''' or '''Guthrie's problem''', is a [[problem]] in [[cartography]] and [[mathematics]]. It had been noticed that it only required four [[color]]s to fill in the different [[contiguous]] [[shape]]s on a [[map]] of regions or [[country|countries]] or [[province]]s in a flat surface known as a [[plane (geometry)|plane]] such that no two [[adjacent]] regions with a common [[boundary]] had the same color. But proving this [[proposition]] proved extraordinarily difficult, and it required [[analysis]] by high-powered [[computer]]s before the problem could be solved. In mathematical history, there had been numerous attempts to prove the supposition, but these so-called [[proof (mathematics)|proofs]] turned out to be flawed. There had been accepted proofs that a map could be colored in using more colors than four, such as six or five, but proving that only four colors were required was not done successfully until 1976 by mathematicians Appel and Haken, although some mathematicians do not accept it since parts of the proof consisted of an analysis of [[discrete]] cases by a computer.<ref name=Math1>{{cite news
==Footnotes==
|title= Four-Color Theorem
|publisher= Wolfram MathWorld
|quote= Six colors can be proven to suffice for the g=0 case, and this number can easily be reduced to five, but reducing the number of colors all the way to four proved very difficult. This result was finally obtained by Appel and Haken (1977), who constructed a computer-assisted proof that four colors were sufficient. However, because part of the proof consisted of an exhaustive analysis of many discrete cases by a computer, some mathematicians do not accept it. However, no flaws have yet been found, so the proof appears valid. A shorter, independent proof was constructed by Robertson et al. (1996; Thomas 1998).
|date= 2010-04-18
|url= http://mathworld.wolfram.com/Four-ColorTheorem.html
|accessdate= 2010-04-18
}}</ref> But, at the present time, the proof remains viable, and was confirmed independently by Robertson and Thomas in association with other mathematicians in 1996&ndash;1998 who have offered a simpler version of the proof, but it is still complex, even for advanced mathematicians.<ref name=Math1/> It is possible that an even simpler, more elegant, proof will someday be discovered, but many mathematicians think that a shorter, more elegant and simple proof is impossible.
 
''[[Four color theorem|.... (read more)]]''
 
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
|-
! style="text-align: center;" | &nbsp;[[Four color theorem#References|notes]]
|-
|
{{reflist|2}}
{{reflist|2}}
|}
</small>

Latest revision as of 10:19, 11 September 2020

After decades of failure to slow the rising global consumption of coal, oil and gas,[1] many countries have proceeded as of 2024 to reconsider nuclear power in order to lower the demand for fossil fuels.[2] Wind and solar power alone, without large-scale storage for these intermittent sources, are unlikely to meet the world's needs for reliable energy.[3][4][5] See Figures 1 and 2 on the magnitude of the world energy challenge.

Nuclear power plants that use nuclear reactors to create electricity could provide the abundant, zero-carbon, dispatchable[6] energy needed for a low-carbon future, but not by simply building more of what we already have. New innovative designs for nuclear reactors are needed to avoid the problems of the past.

(CC) Image: Geoff Russell
Fig.1 Electricity consumption may soon double, mostly from coal-fired power plants in the developing world.[7]

Issues Confronting the Nuclear Industry

New reactor designers have sought to address issues that have prevented the acceptance of nuclear power, including safety, waste management, weapons proliferation, and cost. This article will summarize the questions that have been raised and the criteria that have been established for evaluating these designs. Answers to these questions will be provided by the designers of these reactors in the articles on their designs. Further debate will be provided in the Discussion and the Debate Guide pages of those articles.

Footnotes

  1. Global Energy Growth by Our World In Data
  2. Countries, organizations, and public figures that have reconsidered their stance on nuclear power are listed on the External Links tab of this article.
  3. Pumped storage is currently the most economical way to store electricity, but it requires a large reservoir on a nearby hill or in an abandoned mine. Li-ion battery systems at $500 per KWh are not practical for utility-scale storage. See Energy Storage for a summary of other alternatives.
  4. Utilities that include wind and solar power in their grid must have non-intermittent generating capacity (typically fossil fuels) to handle maximum demand for several days. They can save on fuel, but the cost of the plant is the same with or without intermittent sources.
  5. Mark Jacobson believes that long-distance transmission lines can provide an alternative to costly storage. See the bibliography for more on this proposal and the critique by Christopher Clack.
  6. "Load following" is the term used by utilities, and is important when there is a lot of wind and solar on the grid. Some reactors are not able to do this.
  7. Fig.1.3 in Devanney "Why Nuclear Power has been a Flop"