CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
(→‎Hypertension: Margaret Thatcher)
imported>John Stephenson
(template)
 
(50 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== '''[[Margaret Thatcher]]''' ==
{{:{{FeaturedArticleTitle}}}}
----
<small>
'''Margaret Thatcher''' (13 October 1925 – 8 April 2013) was the [[Prime Minister of the United Kingdom]] from 1979 to 1990 and leader of the [[Conservative Party (UK)|Conservative Party]] from 1975 to 1990. She made history in being the first and only woman to be prime minister. Thatcher led her party to a series of electoral landslides in 1979, 1983 and 1987 by preaching 'Thatcherism' as a tough remedy to reverse the [[United Kingdom]]'s steady decline. Thatcherism meant she weakened [[trade union|labour union]]s, [[privatisation|privatised]] some industries, rejected [[Keynesian economics|Keynesian economic]] policies for the monetarism of [[Milton Friedman]], and helped reinvigorate the British economy. In foreign policy she collaborated closely with American President [[Ronald Reagan]], especially in his efforts to end the [[Cold War]] by working deals with [[Soviet Union|Soviet]] leader [[Mikhail Gorbachev]]. She was the first prime minister in modern British history to win three consecutive terms, and her 'Iron Lady' image  and toughness in action and optimism for the future impressed many Britons. After proposing a [[poll tax]] that alienated voters, and continuing with a domineering style that alienated politicians, she was ousted from power in 1990 and took a peerage. Historians rank her impact alongside [[Winston Churchill]], [[David Lloyd George]] and [[Tony Blair]] - indeed, she forced Blair to abandon [[socialism]] and incorporate elements of Thatcherism into his [[Labour Party (UK)|'New' Labour]] policies.
==Footnotes==
 
''[[Margaret Thatcher|.... (read more)]]''
 
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
|-
! style="text-align: center;" | &nbsp;[[Margaret Thatcher|notes]]
|-
|
{{reflist|2}}
{{reflist|2}}
|}
</small>

Latest revision as of 10:19, 11 September 2020

After decades of failure to slow the rising global consumption of coal, oil and gas,[1] many countries have proceeded as of 2024 to reconsider nuclear power in order to lower the demand for fossil fuels.[2] Wind and solar power alone, without large-scale storage for these intermittent sources, are unlikely to meet the world's needs for reliable energy.[3][4][5] See Figures 1 and 2 on the magnitude of the world energy challenge.

Nuclear power plants that use nuclear reactors to create electricity could provide the abundant, zero-carbon, dispatchable[6] energy needed for a low-carbon future, but not by simply building more of what we already have. New innovative designs for nuclear reactors are needed to avoid the problems of the past.

(CC) Image: Geoff Russell
Fig.1 Electricity consumption may soon double, mostly from coal-fired power plants in the developing world.[7]

Issues Confronting the Nuclear Industry

New reactor designers have sought to address issues that have prevented the acceptance of nuclear power, including safety, waste management, weapons proliferation, and cost. This article will summarize the questions that have been raised and the criteria that have been established for evaluating these designs. Answers to these questions will be provided by the designers of these reactors in the articles on their designs. Further debate will be provided in the Discussion and the Debate Guide pages of those articles.

Footnotes

  1. Global Energy Growth by Our World In Data
  2. Countries, organizations, and public figures that have reconsidered their stance on nuclear power are listed on the External Links tab of this article.
  3. Pumped storage is currently the most economical way to store electricity, but it requires a large reservoir on a nearby hill or in an abandoned mine. Li-ion battery systems at $500 per KWh are not practical for utility-scale storage. See Energy Storage for a summary of other alternatives.
  4. Utilities that include wind and solar power in their grid must have non-intermittent generating capacity (typically fossil fuels) to handle maximum demand for several days. They can save on fuel, but the cost of the plant is the same with or without intermittent sources.
  5. Mark Jacobson believes that long-distance transmission lines can provide an alternative to costly storage. See the bibliography for more on this proposal and the critique by Christopher Clack.
  6. "Load following" is the term used by utilities, and is important when there is a lot of wind and solar on the grid. Some reactors are not able to do this.
  7. Fig.1.3 in Devanney "Why Nuclear Power has been a Flop"