Fuzzy subset: Difference between revisions
imported>Giangiacomo Gerla |
imported>Giangiacomo Gerla |
||
Line 9: | Line 9: | ||
== Some set-theoretical notions for fuzzy subsets == | == Some set-theoretical notions for fuzzy subsets == | ||
In classical mathematics the definitions of union, intersection and complement are related with the interpretation of the basic logical connectives <math>\vee, \wedge, \neg</math>. In order to define the same operations for fuzzy subsets, we have to fix a multi-valued logic and therefore suitable operations <math> \oplus, \otimes</math> | In classical mathematics the definitions of union, intersection and complement are related with the interpretation of the basic logical connectives <math>\vee, \wedge, \neg</math>. In order to define the same operations for fuzzy subsets, we have to fix a multi-valued logic and therefore suitable operations <math> \oplus, \otimes</math> and ~ to interpret these connectives. In such a case, se set | ||
<math>(s\cup t)(x) = s(x)\oplus t(x)</math>, | <math>(s\cup t)(x) = s(x)\oplus t(x)</math>, | ||
Line 17: | Line 17: | ||
<math>(-s)(x) = ~s(x)</math>. | <math>(-s)(x) = ~s(x)</math>. | ||
In such a way, if we denote by <math>F(S)</math> the class of all the fuzzy subsets of ''S'', one defines an algebraic structure <math>(F(S),\cup, \cap, -)</math>. Such a structure is the direct power of the structure <math>([0,1],\oplus, \otimes, | In such a way, if we denote by <math>F(S)</math> the class of all the fuzzy subsets of ''S'', one defines an algebraic structure <math>(F(S),\cup, \cap, -)</math>. Such a structure is the direct power of the structure <math>([0,1],\oplus, \otimes,</math>~) with index set ''S''. Also, an ''inclusion relation'' is defined by setting | ||
<math>s\subset t LeftRightarrow s(x)\leq t(x)</math> for every <math>x\in S</math>. | |||
In Zadeh's original papers the operations <math> \oplus, \otimes</math>, '''~''' are defined by setting for every ''x'' and ''y'' in [0,1]: | |||
<math> x\otimes y </math> = min(''x'', ''y'') | <math> x\otimes y </math> = min(''x'', ''y'') |
Revision as of 04:22, 29 June 2007
The notion of fuzzy subset
Given a subset X of a set S its characteristic function is the map such that if x is an element in X and otherwise. The notion of fuzzy subset is obtained by substituting the Boolean algebra {0,1} with the complete lattice [0,1]. In other words, a fuzzy subset is a characteristic function in which intermediate truth values are admitted. The following is a precise definition.
Definition Given a nonempty set S, a fuzzy subset of S is a map s from S into the interval [0,1]. We say that s is crisp if for every .
The idea is that such a notion enables us to represent the extension of predicates as "big","slow", "near" "similar", which are vague in nature. Indeed, the elements in [0,1] are interpreted as truth values and, in accordance, for every x in S, the value s(x) is interpreted as the membership degree of x to s. By associating every classical subsets of S with its caracteristic function, we can identify the subsets of S with the crisp fuzzy subsets.
Some set-theoretical notions for fuzzy subsets
In classical mathematics the definitions of union, intersection and complement are related with the interpretation of the basic logical connectives . In order to define the same operations for fuzzy subsets, we have to fix a multi-valued logic and therefore suitable operations and ~ to interpret these connectives. In such a case, se set
,
,
.
In such a way, if we denote by the class of all the fuzzy subsets of S, one defines an algebraic structure . Such a structure is the direct power of the structure ~) with index set S. Also, an inclusion relation is defined by setting
for every .
In Zadeh's original papers the operations , ~ are defined by setting for every x and y in [0,1]:
= min(x, y)
= max(x,y)
= 1-x.
Several authors prefer to consider different operations, as an example to assume that is a triangular norm and that is the corresponding triangular co-norm.
An extension of these definitions to the general case in which instead of [0,1] we consider different algebraic structures is obvious.
Fuzzy logic and probability
Many peoples compare fuzzy logic with probability theory since both refer to the interval [0,1]. However, they are conceptually distinct since we have not confuse a degree of truth with a probability measure. To illustrate the difference, consider the following example: Let be the claim "the rose on the table is red" and imagine we can freely examine the rose (complete knowledge) but, as a matter of fact, the color looks not exactly red. Then is neither fully true nor fully false and we can express that by assigning to a truth value, as an example 0.8, different from 0 and 1 (fuzziness). This truth value does not depend on the information we have since this information is complete.
Now, imagine a world in which all the roses are either clearly red or clearly yellow. In such a world is either true or false but, inasmuch as we cannot examine the rose on the table, we are not able to know what is the case. Nevertheless, we have an opinion about the possible color of that rose and we could assign to a number, as an example 0.8, as a subjective measure of our degree of belief in (probability). In such a case this number depends strongly from the information we have and, for example, it can vary if we have some new information on the taste of the possessor of the rose.
See also
- Neuro-fuzzy
- Fuzzy subalgebra
- Fuzzy associative matrix
- FuzzyCLIPS expert system
- Fuzzy control system
- Fuzzy set
- Paradox of the heap
- Pattern recognition
- Rough set
Bibliography
- Cox E., The Fuzzy Systems Handbook (1994), ISBN 0-12-194270-8
- Elkan C.. The Paradoxical Success of Fuzzy Logic. November 1993. Available from Elkan's home page.
- Gerla G., Fuzzy logic: Mathematical Tools for Approximate Reasoning, Kluwer, 2001.
- Hájek P., Metamathematics of fuzzy logic. Kluwer 1998.
- Höppner F., Klawonn F., Kruse R. and Runkler T., Fuzzy Cluster Analysis (1999), ISBN 0-471-98864-2.
- Klir G. and Folger T., Fuzzy Sets, Uncertainty, and Information (1988), ISBN 0-13-345984-5.
- Klir G. , UTE H. St. Clair and Bo Yuan Fuzzy Set Theory Foundations and Applications,1997.
- Klir G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic (1995) ISBN 0-13-101171-5
- Bart Kosko, Fuzzy Thinking: The New Science of Fuzzy Logic (1993), Hyperion. ISBN 0-7868-8021-X
- Novák V., Perfilieva I, Mockor J., Mathematical Principles of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, (1999).
- Yager R. and Filev D., Essentials of Fuzzy Modeling and Control (1994), ISBN 0-471-01761-2
- Zimmermann H., Fuzzy Set Theory and its Applications (2001), ISBN 0-7923-7435-5.
- Zadeh L.A., Fuzzy Sets, ‘’Information and Control’’, 8 (1965) 338353.