Carmichael number: Difference between revisions
imported>Hendra I. Nurdin |
imported>Karsten Meyer |
||
Line 11: | Line 11: | ||
== Chernick's Carmichael numbers == | == Chernick's Carmichael numbers == | ||
[[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers <math>\scriptstyle 6n+1\ </math>, <math>\scriptstyle 12n+1\ </math> and <math>\scriptstyle 18n+1\ </math> are prime numbers, the product <math>\scriptstyle (6n+1)\cdot (12n+1)\cdot (18n+1)</math> is a Carmichael number. Equivalent to this is that if <math>\scriptstyle m\ </math>, <math>\scriptstyle 2m-1\ </math> and <math>\scriptstyle 3m-2</math> are prime numbers, then the product <math>\scriptstyle m\cdot (2m-1)\cdot (3m-2)</math> is a Carmichael number. | [[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers <math>\scriptstyle 6n+1\ </math>, <math>\scriptstyle 12n+1\ </math> and <math>\scriptstyle 18n+1\ </math> are prime numbers, the product <math>\scriptstyle M_3(n) = (6n+1)\cdot (12n+1)\cdot (18n+1)</math> is a Carmichael number. Equivalent to this is that if <math>\scriptstyle m\ </math>, <math>\scriptstyle 2m-1\ </math> and <math>\scriptstyle 3m-2</math> are prime numbers, then the product <math>\scriptstyle m\cdot (2m-1)\cdot (3m-2)</math> is a Carmichael number. | ||
This way to construct Carmichael numbers could expand to <math>M_k(n)=(6n+1)(12n+1)\prod_{i=1}^{k-2}(9\cdot 2^in+1)</math> with the restiction, that for <math>(36\cdot 2^jm + 1)</math> the variable <math>m\ </math> is divisible bei <math>2^j\ </math> | |||
==References and notes== | ==References and notes== |
Revision as of 05:16, 5 February 2008
A Carmichael number is a composite number named after the mathematician Robert Daniel Carmichael. A Carmichael number satisfies for every integer that is divisible by . A Carmichael number c also satisfies the congruence , if . The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601 and 8911. In 1994 Pomerance, Alford and Granville proved that there exist infinitely many Carmichael numbers.
Properties of a Carmichael number
- Every Carmichael number is square-free and has at least three different prime factors
- For every Carmichael number c it holds that is divisible by for every one of its prime factors .
- Every Carmichael number is an Euler pseudoprime.
- Every absolute Euler pseudoprime is a Carmichael number.
Chernick's Carmichael numbers
J. Chernick found in 1939 a way to construct Carmichael numbers[1]. If, for a natural number n, the three numbers , and are prime numbers, the product is a Carmichael number. Equivalent to this is that if , and are prime numbers, then the product is a Carmichael number.
This way to construct Carmichael numbers could expand to with the restiction, that for the variable is divisible bei
References and notes
Further reading
- Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational Perspective. Springer-Verlag, 2001. ISBN 0-387-25282-7
- Paolo Ribenboim. The New Book of Prime Number Records. Springer-Verlag, 1996, ISBN 0-387-94457-5