Relation (mathematics): Difference between revisions
imported>Richard Pinch (def of n-ary relation) |
imported>Richard Pinch (sections on order, equivalence relation) |
||
Line 17: | Line 17: | ||
* ''R'' is ''reflexive'' if <math>(x,x) \in R</math> for all <math>x \in X</math>. | * ''R'' is ''reflexive'' if <math>(x,x) \in R</math> for all <math>x \in X</math>. | ||
* ''R'' is ''irrreflexive'' if <math>(x,x) \not\in R</math> for all <math>x \in X</math>. | |||
* ''R'' is ''symmetric'' if <math>(x,y) \in R \Leftrightarrow (y,x) \in R</math>; that is, <math>R = R^\top</math>. | * ''R'' is ''symmetric'' if <math>(x,y) \in R \Leftrightarrow (y,x) \in R</math>; that is, <math>R = R^\top</math>. | ||
* ''R'' is ''antisymmetric'' if <math>(x,y) \in R \Rightarrow (y,x) \not\in R</math>; that is, ''R'' and its transpose are disjoint. | |||
* ''R'' is ''transitive'' if <math>(x,y), (y,z) \in R \Rightarrow (x,z)</math>; that is, <math>R \circ R \subseteq R</math>. | * ''R'' is ''transitive'' if <math>(x,y), (y,z) \in R \Rightarrow (x,z)</math>; that is, <math>R \circ R \subseteq R</math>. | ||
An ''equivalence relation'' is one which is reflexive, symmetric and transitive. | ==Equivalence relation== | ||
An '''equivalence relation''' on a set ''X'' is one which is reflexive, symmetric and transitive. The ''identity'' relation ''X'' is the ''diagonal'' <math>\{ (x,x) : x \in X \}</math>. | |||
==Order== | |||
A ('''strict''') '''partial order''' is which is irreflexive, antisymmetric and transitive. A '''weak''' partial order is the union of a strict partial order and the identity. The usual notations for a partial order are <math>x \le y</math> or <math>x \preceq y</math> for weak orders and <math>x < y</math> or <math>x \prec y</math> for strict orders. | |||
A '''total''' or '''linear order''' is one which has the ''trichotomy'' property: for any ''x'', ''y'' exactly one of the three statements <math>x < y</math>, <math>x = y</math>, <math>x > y</math> holds. | |||
==Functions== | ==Functions== | ||
We say that a relation ''R'' is ''functional'' if it satisfies the condition that every <math>x \in X</math> occurs in exactly one pair <math>(x,y) \in R</math>. We then define the value of the function at ''x'' to be that unique ''y''. We thus identify a [[function (mathematics)|function]] with its [[graph]]. | We say that a relation ''R'' is ''functional'' if it satisfies the condition that every <math>x \in X</math> occurs in exactly one pair <math>(x,y) \in R</math>. We then define the value of the function at ''x'' to be that unique ''y''. We thus identify a [[function (mathematics)|function]] with its [[graph]]. |
Revision as of 13:24, 3 November 2008
A relation between sets X and Y is a subset of the Cartesian product, . We write to indicate that , and say that x "stands in the relation R to" y, or that x "is related by R to" y.
The composition of a relation R between X and Y and a relation S between Y and Z is
The transpose of a relation R between X and Y is the relation between Y and X defined by
More generally, we may define an n-ary relation to be a subset of the product of n sets .
Relations on a set
A relation R on a set X is a relation between X and itself, that is, a subset of .
- R is reflexive if for all .
- R is irrreflexive if for all .
- R is symmetric if ; that is, .
- R is antisymmetric if ; that is, R and its transpose are disjoint.
- R is transitive if ; that is, .
Equivalence relation
An equivalence relation on a set X is one which is reflexive, symmetric and transitive. The identity relation X is the diagonal .
Order
A (strict) partial order is which is irreflexive, antisymmetric and transitive. A weak partial order is the union of a strict partial order and the identity. The usual notations for a partial order are or for weak orders and or for strict orders.
A total or linear order is one which has the trichotomy property: for any x, y exactly one of the three statements , , holds.
Functions
We say that a relation R is functional if it satisfies the condition that every occurs in exactly one pair . We then define the value of the function at x to be that unique y. We thus identify a function with its graph.