Intersection: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(definition of disjoint sets)
imported>Richard Pinch
(subpages)
Line 1: Line 1:
{{subpages}}
In [[set theory]], the '''intersection''' of two sets is the set of elements that they have in common:
In [[set theory]], the '''intersection''' of two sets is the set of elements that they have in common:



Revision as of 14:24, 28 November 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In set theory, the intersection of two sets is the set of elements that they have in common:

where denotes logical and. Two sets are disjoint if their intersection is the empty set.

Properties

The intersection operation is:

  • associative : ;
  • commutative : .

General intersections

Finite intersections

The intersection of any finite number of sets may be defined inductively, as

Infinite intersections

The intersection of a general family of sets Xλ as λ ranges over a general index set Λ may be written in similar notation as

We may drop the indexing notation and define the intersection of a set to be the set of elements contained in all the elements of that set:

In this notation the intersection of two sets A and B may be expressed as

The correct definition of the intersection of the empty set needs careful consideration.

See also

References