Geometric series: Difference between revisions
Jump to navigation
Jump to search
imported>Paul Wormer No edit summary |
imported>Paul Wormer No edit summary |
||
Line 16: | Line 16: | ||
The infinite geometric series <math>a\sum_{k=1}^\infty x^{k-1}</math> converges when |''x''| < 1, because in that case ''x''<sup>''k''</sup> tends to zero for <font style = "vertical-align: 10%"><math> k \rightarrow \infty</math></font> and hence | The infinite geometric series <math>a\sum_{k=1}^\infty x^{k-1}</math> converges when |''x''| < 1, because in that case ''x''<sup>''k''</sup> tends to zero for <font style = "vertical-align: 10%"><math> k \rightarrow \infty</math></font> and hence | ||
:<math> | :<math> | ||
\lim_{n\rightarrow \infty} S_n = \frac{ | \lim_{n\rightarrow \infty} S_n = \frac{a}{1-x},\quad\hbox{for}\quad |x| < 1. | ||
</math> | </math> | ||
The geometric series diverges for |''x''| ≥ 1. | The geometric series diverges for |''x''| ≥ 1. |
Revision as of 05:26, 6 November 2008
A geometric series consisting of n terms is,
where a and x are real numbers. It can be shown that
The infinite geometric series converges when |x| < 1, because in that case xk tends to zero for and hence
The geometric series diverges for |x| ≥ 1.