Geometric series: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
No edit summary
imported>Paul Wormer
No edit summary
Line 16: Line 16:
The infinite geometric series <math>a\sum_{k=1}^\infty x^{k-1}</math> converges when |''x''| < 1, because in that case ''x''<sup>''k''</sup> tends to zero for <font style = "vertical-align: 10%"><math> k \rightarrow \infty</math></font> and hence
The infinite geometric series <math>a\sum_{k=1}^\infty x^{k-1}</math> converges when |''x''| < 1, because in that case ''x''<sup>''k''</sup> tends to zero for <font style = "vertical-align: 10%"><math> k \rightarrow \infty</math></font> and hence
:<math>
:<math>
\lim_{n\rightarrow \infty} S_n = \frac{1}{1-x},\quad\hbox{for}\quad |x| < 1.
\lim_{n\rightarrow \infty} S_n = \frac{a}{1-x},\quad\hbox{for}\quad |x| < 1.
</math>
</math>
The geometric series diverges for |''x''| &ge; 1.
The geometric series diverges for |''x''| &ge; 1.

Revision as of 05:26, 6 November 2008

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable, developed Main Article is subject to a disclaimer.

A geometric series consisting of n terms is,

where a and x are real numbers. It can be shown that

The infinite geometric series converges when |x| < 1, because in that case xk tends to zero for and hence

The geometric series diverges for |x| ≥ 1.