Monotonic function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Bruce M. Tindall
mNo edit summary
mNo edit summary
 
Line 9: Line 9:


==References==
==References==
* {{cite book | author=A.G. Howson | title=A handbook of terms used in algebra and analysis | publisher=[[Cambridge University Press]] | year=1972 | isbn=0-521-09695-2 | pages=115,119 }}
* {{cite book | author=A.G. Howson | title=A handbook of terms used in algebra and analysis | publisher=[[Cambridge University Press]] | year=1972 | isbn=0-521-09695-2 | pages=115,119 }}[[Category:Suggestion Bot Tag]]

Latest revision as of 06:00, 21 September 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a function (mathematics) is monotonic or monotone increasing if it preserves order: that is, if inputs x and y satisfy then the outputs from f satisfy . A monotonic decreasing function similarly reverses the order. A function is strictly monotonic if inputs x and y satisfying have outputs from f satisfying : that is, it is injective in addition to being montonic.

A differentiable function on the real numbers is monotonic when its derivative is non-zero: this is a consequence of the Mean Value Theorem.

Monotonic sequence

A special case of a monotonic function is a sequence regarded as a function defined on the natural numbers. So a sequence is monotonic increasing if implies . In the case of real sequences, a monotonic sequence converges if it is bounded. Every real sequence has a monotonic subsequence.

References