Pole (complex analysis): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
m (typo)
imported>Richard Pinch
m (link)
Line 5: Line 5:
:<math>\lim_{z \rightarrow a} f(z) (z-a)^k = r . \,</math>.
:<math>\lim_{z \rightarrow a} f(z) (z-a)^k = r . \,</math>.


The pole is an ''isolated singularity'' if there is a neighbourhood of ''a'' in which ''f'' is [[holomorphic function|holomorphic]] except at ''a''.  In this case the function has a [[Laurent series]] in a neighbourhood of ''a'', so that ''f'' is expressible as a power series
The pole is an ''[[isolated singularity]]'' if there is a neighbourhood of ''a'' in which ''f'' is [[holomorphic function|holomorphic]] except at ''a''.  In this case the function has a [[Laurent series]] in a neighbourhood of ''a'', so that ''f'' is expressible as a power series


:<math> f(z) = \sum_{n=-k}^\infty c_n (z-a)^n , \,</math>
:<math> f(z) = \sum_{n=-k}^\infty c_n (z-a)^n , \,</math>

Revision as of 13:46, 11 November 2008

In complex analysis, a pole is a type of singularity of a function of a complex variable. In the neighbourhood of a pole, the function behave like a negative power.

A function f has a pole of order k, where k is a positive integer, with (non-zero) residue r at a point a if the limit

.

The pole is an isolated singularity if there is a neighbourhood of a in which f is holomorphic except at a. In this case the function has a Laurent series in a neighbourhood of a, so that f is expressible as a power series

where the leading coefficient .

An isolated singularity may be either removable, a pole, or an essential singularity.

References

  • Tom M. Apostol (1974). Mathematical Analysis, 2nd ed. Addison-Wesley, 458.