Nowhere dense set: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch m (update link) |
imported>John Stephenson (cats) |
||
Line 9: | Line 9: | ||
==References== | ==References== | ||
* {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=145,201 }} | * {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=145,201 }} | ||
[[Category:Mathematics Workgroup]] | |||
[[Category:CZ Live]] |
Revision as of 04:23, 27 February 2009
In general topology, a nowhere dense set in a topological space is a set whose closure has empty interior.
An infinite Cartesian product of non-empty non-compact spaces has the property that every compact subset is nowhere dense.
A finite union of nowhere dense sets is again nowhere dense.
A first category space or meagre space is a countable union of nowhere dense sets: any other topological space is of second category. The Baire category theorem states that a non-empty complete metric space is of second category.
References
- J.L. Kelley (1955). General topology. van Nostrand, 145,201.