Baire category theorem: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (New entry, just a stub) |
imported>Richard Pinch (→References: page numbers) |
||
Line 2: | Line 2: | ||
==References== | ==References== | ||
* {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 }} | * {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=200-201 }} |
Revision as of 16:17, 3 January 2009
In general topology, the Baire category theorem states that a non-empty complete metric space is a second category space: that is, it is not a countable union of nowhere dense sets (sets whose closure have empty interior).
References
- J.L. Kelley (1955). General topology. van Nostrand, 200-201.