Levi-Civita symbol: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
(rewording; same content)
imported>John R. Brews
(source)
Line 22: Line 22:
The Levi-Civita symbol is used in the definition of the [[Levi-Civita tensor]] that has components denoted as &epsilon;<sub>''ijk''</sub>.
The Levi-Civita symbol is used in the definition of the [[Levi-Civita tensor]] that has components denoted as &epsilon;<sub>''ijk''</sub>.


The symbol can be generalized to ''n''-dimensions, to become the ''n''-index symbol &epsilon;<sub>''ijk...r''</sub> completely antisymmetric in its indices, and with &epsilon;<sub>123...''n''</sub>&nbsp;=&nbsp;1. More specifically, the symbol is has value 1 for even [[Permutation group|permutations]] of the ''n'' indices, value −1 for odd permutations, and value 0 otherwise.
The symbol can be generalized to ''n''-dimensions, to become the ''n''-index symbol &epsilon;<sub>''ijk...r''</sub> completely antisymmetric in its indices, and with &epsilon;<sub>123...''n''</sub>&nbsp;=&nbsp;1. More specifically, the symbol is has value 1 for even [[Permutation group|permutations]] of the ''n'' indices, value −1 for odd permutations, and value 0 otherwise.<ref name= Weber>
 
For example, see {{cite book |title=Essential mathematical methods for physicists |author=Hans-Jurgen Weber, George Brown Arfken |url=http://books.google.com/books?id=k046p9v-ZCgC&pg=PA164 |pages=p. 164 |isbn=0120598779 |edition=5th ed |publisher=Academic Press}}
 
</ref>


Both the symbol and the tensor are named after the Italian mathematician and physicist [[Tullio Levi-Civita]].  
Both the symbol and the tensor are named after the Italian mathematician and physicist [[Tullio Levi-Civita]].  


<!--
==Notes==
 
<references/>
-->

Revision as of 23:23, 2 January 2011

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Levi-Civita symbol, usually denoted as εijk, is a notational convenience (similar to the Kronecker delta δij). Its value is:

  • equal to 1, if the indices are pairwise distinct and in cyclic order,
  • equal to −1, if the indices are pairwise distinct but not in cyclic order, and
  • equal to 0, if two of the indices are equal.

Thus

Remarks:

The symbol changes sign whenever two of the indices are interchanged.

The Levi-Civita symbol equals the sign of the permutation (ijk). Therefore it is also called (Levi-Civita) permutation symbol.

The Levi-Civita symbol is used in the definition of the Levi-Civita tensor that has components denoted as εijk.

The symbol can be generalized to n-dimensions, to become the n-index symbol εijk...r completely antisymmetric in its indices, and with ε123...n = 1. More specifically, the symbol is has value 1 for even permutations of the n indices, value −1 for odd permutations, and value 0 otherwise.[1]

Both the symbol and the tensor are named after the Italian mathematician and physicist Tullio Levi-Civita.

Notes

  1. For example, see Hans-Jurgen Weber, George Brown Arfken. Essential mathematical methods for physicists, 5th ed. Academic Press, p. 164. ISBN 0120598779.