File:FFTexample16T.png: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Meg Taylor
No edit summary
imported>Meg Taylor
No edit summary
Line 1: Line 1:
== Summary ==
== Summary ==
{{Image_Details|user
{{Image_Details|user
|description  = Application of the [[FFT]] operator to the array that approximates the [[self-Fourier]] gaussian
|description  = Application of the [[fast Fourier transform]] operator to the array that approximates the [[self-Fourier]] Gaussian
|author      = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]]
|author      = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]]
|date-created =  9 October 2011
|date-created =  9 October 2011
Line 10: Line 10:
The function <math>A</math> is represented at the mesh with nodes <math>x_n=\sqrt{\frac{\pi}{8}} (n\!-\!8)~,~ n=0 .. 15</math> in such a way that <math>A_n=A(x_n)</math>
The function <math>A</math> is represented at the mesh with nodes <math>x_n=\sqrt{\frac{\pi}{8}} (n\!-\!8)~,~ n=0 .. 15</math> in such a way that <math>A_n=A(x_n)</math>


The [[FFT]] of array <math>A</math> is performed with the routine  
The [[fast Fourier transform]] of array <math>A</math> is performed with the routine  


  void fft(z_type *a, int N, int o) // Arry is FIRST!
  void fft(z_type *a, int N, int o) // Arry is FIRST!
Line 29: Line 29:
However, the transformation with the routine [[fafo.cin]] would return practically the same array, while the routine fafo is the discrete analogy of the [[Fourier operator]] and function <math>A</math> is [[self Fourier]].  
However, the transformation with the routine [[fafo.cin]] would return practically the same array, while the routine fafo is the discrete analogy of the [[Fourier operator]] and function <math>A</math> is [[self Fourier]].  


The figure shows difference between [[FFT]] and the discrete implementation of the [[Fourier operator]]. For the self-Fourier Gaussian, the Fourier operator returns the same array, while the [[FFT]] returns the saw-like structure. For the physical applications, [[fafo.cin]] seems to be more suitable.
The figure shows difference between [[fast Fourier transform]] and the discrete implementation of the [[Fourier operator]]. For the self-Fourier Gaussian, the Fourier operator returns the same array, while the [[fast Fourier transform]] returns the saw-like structure. For the physical applications, [[fafo.cin]] seems to be more suitable.


==[[C++]] generator of curves==
==[[C++]] generator of curves==
// The picture is generated with the  
// The picture is generated with the  
//File [[fafo.cin]] should be loaded to the working directory for the compilation of the code below.
//File [[fafo.cin]] should be loaded to the working directory for the compilation of the code below.
Line 174: Line 173:


==Keywords==
==Keywords==
[[Fourier operator]],
[[Fourier operator]],
[[Explicit plots]],
[[Explicit plots]],
[[FFT]]
[[Fast Fourier transform]]


== Licensing ==
== Licensing ==
{{CC|by|3.0}}
{{CC|by|3.0}}

Revision as of 06:13, 22 October 2013

Summary

Title / Description


Application of the fast Fourier transform operator to the array that approximates the self-Fourier Gaussian
Citizendium author
& Copyright holder


Copyright © Dmitrii Kouznetsov.
See below for licence/re-use information.
Date created


9 October 2011
Country of first publication


Japan
Notes


Comparison of the discrete Fourier transform, shown with red,

of a self–Fourier function , shown with black dots, to the result of the numerical evaluation of the the Fourier operator of array , shown with blue. The discrete representation is performed with number of nodes .

The function is represented at the mesh with nodes in such a way that

The fast Fourier transform of array is performed with the routine

void fft(z_type *a, int N, int o) // Arry is FIRST!
{z_type u,w,t;  int i,j,k,l,e=1,L,p,q,m;
q=N/2;  p=2; for(m=1;p<N;m++) p*=2; 
p=N-1;  z_type y=z_type(0.,M_PI*o); j=0;
for(i=0;i<p;i++){ if(i<j) { t=a[j]; a[j]=a[i]; a[i]=t;}
                  k=q; while(k<=j){ j-=k; k/=2;} 
                  j+=k; }
for(l=0;l<m;l++)
{ L=e; e*=2; u=1.; w=exp(y/((double)L));
 for(j=0;j<L;j++)
 {  for(i=j;i<N;i+=e){k=i+L; t=a[k]*u; a[k]=a[i]-t; a[i]+=t;}
    u*=w;
} }
}

However, the transformation with the routine fafo.cin would return practically the same array, while the routine fafo is the discrete analogy of the Fourier operator and function is self Fourier.

The figure shows difference between fast Fourier transform and the discrete implementation of the Fourier operator. For the self-Fourier Gaussian, the Fourier operator returns the same array, while the fast Fourier transform returns the saw-like structure. For the physical applications, fafo.cin seems to be more suitable.

C++ generator of curves

// The picture is generated with the //File fafo.cin should be loaded to the working directory for the compilation of the code below.

#include<math.h>
#include<stdio.h>
#include <stdlib.h>
#include <complex>
using namespace std;
#define z_type complex<double>
#define Re(x)  x.real()
#define Im(x)  x.imag()
#define RI(x)  x.real(),x.imag()
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
void ado(FILE *O, int X, int Y)
{       fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
       fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
       fprintf(O,"/M {moveto} bind def\n");
       fprintf(O,"/L {lineto} bind def\n");
       fprintf(O,"/S {stroke} bind def\n");
       fprintf(O,"/s {show newpath} bind def\n");
       fprintf(O,"/C {closepath} bind def\n");
       fprintf(O,"/F {fill} bind def\n");
       fprintf(O,"/o {.025 0 360 arc C F} bind def\n");
       fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
       fprintf(O,"/W {setlinewidth} bind def\n");
       fprintf(O,"/RGB {setrgbcolor} bind def\n");}
// #include "ado.cin"
#include"fafo.cin"
// DB F(DB x){DB u=x*x; return u*(-3.+u)*exp(-x*x/2.);}
DB F(DB x){ return exp(-x*x/2.);}
main(){z_type * a, *b, c; int j,m,n, N=16; FILE *o;
       double step=sqrt(2*M_PI/N),x,y,u;
       a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
       b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
//for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=(3.+u*(-6.+u))*exp(-x*x/2); }
for(j=0;j<N;j++) { x=step*(j-N/2); u=x*x; a[j]=b[j]=F(x); }
fft(b,N,1);
for(j=0;j<N;j++) printf("%2d %18.15f %18.15f  %18.15f %18.15f\n", j, RI(a[j]), RI(b[j])  );
o=fopen("FFTexample16.eps","w"); ado(o,1024,780); 
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
#define o(x,y) fprintf(o,"%6.4f %6.4f o\n",0.+x,0.+y);
fprintf(o,"522 340 translate 100 100 scale\n");
// M(-5,0) L(5,0) M(0,0) L(0,1) fprintf(o,".01 W S\n");
// M(-5,1) L(5,1) M(-5,-1) L(5,-1)
for(m=-5;m<6;m++) {M(m,-3) L(m,3)} fprintf(o,".004 W S\n");
for(m=-3;m<4;m++) {M(-5,m) L(5,m)} fprintf(o,".004 W S\n");
fprintf(o,"1 setlinejoin 1 setlinecap\n");
DB *X; X=(DB *) malloc((size_t)((N+1)*sizeof(DB))); DO(j,N){ x=step*(j-N/2); X[j]=x; }
DO(j,N){x=X[j]; M(x,0)L(x,.15)} fprintf(o,".01 W S\n");
DO(j,N){x=X[j];y=Re(a[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,".04 W 0 .4 1 RGB S\n");
DO(j,N){x=X[j];y=Re(b[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,".04 W 1 0 0 RGB S\n");
// DO(j,N){x=X[j];y=Im(b[j]); if(j==0)M(x,y)else L(x,y);} fprintf(o,".04 W 1 0 0 RGB S\n");
// DO(j,N){x=X[j];y=100.*(Re(b[j])-F(x)); if(j==0)M(x,y)else L(x,y);} fprintf(o,"0.007 W 0 0 .3 RGB S\n");
printf("X[0]=%9.5f step=%9.6f\n",X[0],step);
// DO(m,101){x=-5.+.1*m; y=F(x); if(m/2*2==m)M(x,y)else L(x,y);} fprintf(o,".01 W 0 0 0 RGB S\n");
fprintf(o,".01 W 0 0 0 RGB S\n");
DO(m,101){x=-5.+.1*m; y=F(x); o(x,y)}
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
 system("epstopdf FFTexample16.eps");
 system(    "open FFTexample16.pdf"); //these 2 commands may be specific for macintosh
 getchar(); system("killall Preview");// if run at another operational system, may need to modify
 free(a);
 free(b);
 free(X);
}

The image is generated in the following way.

The lines are drawn in the EPS format by the C++ code below. The result is concerted to PDF format.

The labels are added in the latex document below.

The result is concerted to the PNG format with default resolution.

Other versions


The image is loaded from http://tori.ils.uec.ac.jp/TORI/index.php/File:FFTexample16T.png
Using this image on CZ


Please click here to add the credit line, then copy the code below to add this image to a Citizendium article, changing the size, alignment, and caption as necessary.

{{Image|FFTexample16T.png|right|350px|Add image caption here.}}

Image issue? Contact us via the email below.

Please send email to manager A T citizendium.org .


Latex generator of labels

The labels are drawn with the Latex document below. File FFTexample16.pdf is supposed to be already generated with the C++ code above and stored in the working directory.

\documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \paperwidth 1012pt %<br> \paperheight 740pt %<br> \textheight 800pt \topmargin -104pt %<br> \oddsidemargin -92pt %<br> \parindent 0pt %<br> \pagestyle{empty} %<br> \usepackage{graphicx} %<br> \newcommand \sx \scalebox %<br> \begin{document} %<br> \begin{picture}(1024,742) %<br> \put(4,0){\includegraphics{FFTexample16}} %<br> %\put(510,732){\sx{2.4}{$y$}} %<br> \put(510,634){\sx{2.5}{$y$}} %<br> \put(510,532){\sx{2.4}{$2$}} %<br> \put(510,432){\sx{2.4}{$1$}} %<br> %\put(510,320){\sx{2.4}{$0$}} %<br> \put(496,232){\sx{2.4}{$-\!1$}} %<br> \put(496,132){\sx{2.4}{$-\!2$}} %<br> \put(496, 32){\sx{2.4}{$-\!3$}} %<br> %<br> \put(104,310){\sx{2.4}{$-4$}} %<br> \put(204,310){\sx{2.4}{$-3$}} %<br> \put(304,310){\sx{2.4}{$-2$}} %<br> \put(404,310){\sx{2.4}{$-1$}} %<br> \put(522,310){\sx{2.4}{$0$}} %<br> \put(622,310){\sx{2.4}{$1$}} %<br> \put(722,310){\sx{2.4}{$2$}} %<br> \put(822,310){\sx{2.4}{$3$}} %<br> \put(923,310){\sx{2.4}{$4$}} %<br> \put(1016,311){\sx{2.5}{$x$}} %<br> \put(19,360){\sx{2.6}{$x_0$}} %<br> \put(79,360){\sx{2.6}{$x_1$}} %<br> \put(140,360){\sx{2.6}{$x_2$}} %<br> \put(199,360){\sx{2.6}{$x_3$}} %<br> \put(261,360){\sx{2.6}{$x_4$}} %<br> \put(327,360){\sx{2.6}{$x_5$}} %<br> \put(388,360){\sx{2.6}{$x_6$}} %<br> \put(450,360){\sx{2.6}{$x_7$}} %<br> \put(518,360){\sx{2.6}{$x_8$}} %<br> \put(578,360){\sx{2.6}{$x_9$}} %<br> \put(640,360){\sx{2.6}{$x_{10}$}} %<br> \put(704,360){\sx{2.6}{$x_{11}$}} %<br> \put(767,360){\sx{2.6}{$x_{12}$}} %<br> \put(829,360){\sx{2.6}{$x_{13}$}} %<br> \put(890,360){\sx{2.6}{$x_{14}$}} %<br> \put(950,360){\sx{2.6}{$x_{15}$}} %<br> \end{picture} %<br> \end{document} %

Keywords

Fourier operator, Explicit plots, Fast Fourier transform

Licensing

This media, FFTexample16T.png, is licenced under the Creative Commons Attribution 3.0 Unported License

You are free: To Share — To copy, distribute and transmit the work; To Remix — To adapt the work.
Under the following conditions: Attribution — You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
For any reuse or distribution, you must make clear to others the licence terms of this work (the best way to do this is with a link to this licence's web page). Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this licence impairs or restricts the author's moral rights.
Read the full licence.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:57, 11 March 2022Thumbnail for version as of 18:57, 11 March 20222,101 × 1,536 (155 KB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata