Carmichael number: Difference between revisions
Jump to navigation
Jump to search
imported>Karsten Meyer |
imported>Karsten Meyer m (beautyfying) |
||
Line 1: | Line 1: | ||
A '''Carmichael number''' is a composite number, who is named after the mathematician [[Robert Daniel Carmichael]]. A Carmichael number | A '''Carmichael number''' is a composite number, who is named after the mathematician [[Robert Daniel Carmichael]]. A Carmichael number <math>\scriptstyle c\ </math> satisfies for every integer <math>\scriptstyle a\ </math>, that <math>\scriptstyle a^c - a\ </math> is divisible by <math>\scriptstyle c\ </math>. A Carmichael number ''c'' satisfies also the conrgruence <math>\scriptstyle a^{c-1} \equiv 1 \pmod c</math>, if <math>\scriptstyle \operatorname{gcd}(a,c) = 1</math>. In 1994 Pomerance, Alford and Granville proved that there exist infinitely many Carmichael numbers. | ||
== Properties of a Carmichael number == | == Properties of a Carmichael number == | ||
Line 10: | Line 10: | ||
== Chernicks Carmichael numbers == | == Chernicks Carmichael numbers == | ||
[[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers | [[J. Chernick]] found in 1939 a way to construct Carmichael numbers<ref>[http://home.att.net/~numericana/answer/modular.htm#carmichael (2003-11-22) Generic Carmichael Numbers]</ref>. If, for a natural number ''n'', the three numbers <math>\scriptstyle 6n+1\ </math>, <math>\scriptstyle 12n+1\ </math> and <math>\scriptstyle 18n+1\ </math> are prime numbers, the product <math>\scriptstyle (6n+1)\cdot (12n+1)\cdot (18n+1)</math> is a Carmichael number. Equivalent to this is that if <math>\scriptstyle m\ </math>, <math>\scriptstyle 2m-1\ </math> and <math>\scriptstyle 3m-2</math> are prime numbers, then the product <math>\scriptstyle m\cdot (2m-1)\cdot (3m-2)</math> is a Carmichael number. | ||
==References and notes== | ==References and notes== |
Revision as of 08:30, 17 November 2007
A Carmichael number is a composite number, who is named after the mathematician Robert Daniel Carmichael. A Carmichael number satisfies for every integer , that is divisible by . A Carmichael number c satisfies also the conrgruence , if . In 1994 Pomerance, Alford and Granville proved that there exist infinitely many Carmichael numbers.
Properties of a Carmichael number
- Every A Carmichael number is squarefree and has at least three different prime factors
- For every Carmichael number c is true, that is divisible by for every of its prime factors .
- Every Carmichael number is an Euler pseudoprime.
- Every absolute Euler pseudoprime is a Carmichael number.
Chernicks Carmichael numbers
J. Chernick found in 1939 a way to construct Carmichael numbers[1]. If, for a natural number n, the three numbers , and are prime numbers, the product is a Carmichael number. Equivalent to this is that if , and are prime numbers, then the product is a Carmichael number.
References and notes
Further reading
- Richard E. Crandall and Carl Pomerance: Prime Numbers. A Computational Perspective. Springer Verlag, ISBN 0-387-25282-7
- Paolo Ribenboim: The New Book of Prime Number Records. Springer Verlag, 1996, ISBN 0-387-94457-5