Grothendieck topology: Difference between revisions
Jump to navigation
Jump to search
imported>Giovanni Antonio DiMatteo |
imported>Giovanni Antonio DiMatteo |
||
Line 10: | Line 10: | ||
== | ==Sheaves on Sites== | ||
In analogy with the situation for topological spaces, a presheaf may be defined as a contravariant functor | |||
[[Category:CZ Live]] | [[Category:CZ Live]] | ||
[[Category:Mathematics Workgroup]] | [[Category:Mathematics Workgroup]] | ||
[[Category:Stub Articles]] | [[Category:Stub Articles]] |
Revision as of 16:08, 5 December 2007
The notion of a Grothendieck topology or site is a category which has the features of open covers in topological spaces necessary for generalizing much of sheaf cohomology to sheaves on more general sites.
Definition
Examples
- A standard topological space becomes a category when you regard the open subsets of as objects, and morphisms are inclusions. An open covering of open subsets clearly verify the axioms above for coverings in a site. Notice that a presheaf of rings is just a contravariant functor from the category into the category of rings.
- The Small Étale Site Let be a scheme. Then the category of étale schemes over (i.e., -schemes over whose structural morphisms are étale)
Sheaves on Sites
In analogy with the situation for topological spaces, a presheaf may be defined as a contravariant functor