User:Dmitrii Kouznetsov/loginal: Difference between revisions
imported>Dmitrii Kouznetsov |
imported>Dmitrii Kouznetsov m (→Summation) |
||
Line 49: | Line 49: | ||
: (7) <math> nc + K(t)=K(t+n) </math> | : (7) <math> nc + K(t)=K(t+n) </math> | ||
means that <math> K(t)=t=K^{-1}(t)</math> | means that <math> K(t)=t=K^{-1}(t)</math> | ||
In such a way, this case is trivial. | |||
===Multiplication=== | ===Multiplication=== | ||
If | If |
Revision as of 17:01, 25 May 2008
Template:Under construction; Name of article is temporal. Loginal of function at some space S is function such tat
- (1) for all
Loginal allow the solution of equation
- (2)
in form
- (3)
Loginal should be invertable
- (4)
Then, at the substitution to the initial equation (1)
- (5)
- (6)
Special cases
Summation
In particular, if means addition a constant , id est, , then
- (7)
means that
In such a way, this case is trivial.
Multiplication
If means multiplication by a constant , id est, , then
- (8)
means that and .
Exponentiation
For exponentiation, is tetration,
- (11) ;
or
In particular, I can extract the square root of exponential, id est, to find finction such that
- (12)
The calculation is straightforward:
- (13)
Checkback:
- (14)
- (15)
- (16)
In general case, finding of loginal of a heneral function is not trivial.
References
(needs to be cleaned up)
- Lars Kindermann. References about Iterative Roots and Fractional Iteration. http://reglos.de/lars/ffx.html
- A. Smith. Is there any way to approximate the solution of ?
Argonne National Laboratory, Division of Educational Programs. www.newton.dep.anl.gov/newton/askasci/1993/math/MATH023.HTM
- I.N. Baker, The iteration of entire transcendental functions and the solution of the functional equation f(f(z) = F(z). Math. Ann. 129 (1955), 174-180
- M. Bajraktarevic, Solution générale de l'équation fonctionelle . Publ. Inst. Math. Beograd (N.S.) 5(19) (1965), 115-124
- P. Erdös & E. Jabotinsky, On Analytic Iteration. J. Analyse Math. 8 (1960/61), 361-376
- G.M. Ewing & W.R. Utz, Continuous solutions of . Can. J. Math. 5 (1953), 101-103
- K. Iga, Continuous half-iterates of functions. Manuscript from http://math.pepperdine.edu/~kiga | postscript
- R. Isaacs, Iterates of fractional order. Canad. J. Math. 2 (1950), 409-416.
- R. Isaacs, On Fractional Iteration. Technical Report No. 320, Department of Mathematical Sciences, The John Hopkins University, November 1979
- E. Jabotinsky, Analytic iteration. Trans. Amer. Math. Soc. 108 (1963), 457-477
- W. Jarczyk, A recurrent method of solving iterative functional equations. Prace Nauk. Uniw. Slask. Katowic. 1206 (1991)
- L. Kindermann, An Addition to Backpropagation for Computing Functional Roots. Proc. Int'l ICSC/IFAC Symp. on Neural Computation - NC'98, Vienna (1998), 424-427
- B. Gawel, On the uniqueness of continuous solutions of functional equations. Ann. Polon. Math. LX.3 (1995), 231-239
- H. Kneser, Reelle analytische Lösungen der Gleichung und verwandter Funktionalgleichungen. J. reine angew. Math. 187 (1950), 56-67
- J. Kobza, Iterative functional equation with piecewise linear. Journal of Computational and Applied Mathematics 115 (2000), 331-347
- M. Kuczma, On the functional equation . Ann. Polon. Math. 11 (1961) 161-175
- J.C.Lillo, The functional equation . Arkiv för Mat. 5 (1965), 357-361
- J.C.Lillo, The functional equation . Ann. Polon. Math. 19 (1967), 123-135
L.S.O. Liverpool, Fractional iteration near a fix point of multiplier 1. J. London Math. Soc. 41 (1979) | Homepage
- S. Lojasiewicz, Solotion générale de l'équation fonctionelle . Annales de la Societé Plonaise de Mathematique 24 (1951), 88-91
- J.L. Massera & A. Petracca, On the functional equation . Revista Union Mat. Argentinia 11 (1946), 206-211
- P.B. Miltersen, N.V Vinodchandran, O. Watanabe, Super-polynomial versus half-exponential circuit size in the exponential hierarchy. Research Report c-130, 1999. Dept. of Math and Comput. Sc., Tokyo Inst. of Tech.; also: BRICS Report Series RS-99-4, Dept. of Computer Science, Univ. Aarhus, 1999
- R.E. Rice, Fractional iterates. PhD Thesis, University of Massachusetts, Amherest (1977)
- R.E. Rice, Iterative square roots of Cebysev polynomials. Stochastica 3 (1979), 1-14
- R.E. Rice, B. Schweizer & A. Sklar, When is for all complex Failed to parse (syntax error): {\displaystyle z<math>? Amer. Math. Monthly 87 (1980), 252-263 * M.C. Zdun, Differentiable fractional iteration. Bull. Acad. Sci. Polon. Sér. Sci. Math. Astronom. Phys. 25 (1977), 643-646 *Weinian Zhang, Discussion on iterated equation <math>\sum_{i=1}^n f^i(x)=F(x)} Chin. Sci. Bul. (Kexue Tongbao), 32 (1987), 21: 1444-1451
- Weinian Zhang, A generic property of globally smooth iterative roots. Scientia Sinica A, 38 (1995), 267-272
- Weinian Zhang, PM functions, their characteristic intervals and iterative roots. Annales Polonici Mathematici, LXV.2 (1997), 119-128
- Weinian Zhang, Discussion on the differentiable solutions of the iterated equation . Nonlinear Analysis, 15 (1990), 4: 387-398
- P. Walker, Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of Computation 57 (1991), 723-733