Resultant (statics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(expanded proof, supplied reference Quadling+Ramsay)
imported>Todd Coles
No edit summary
Line 1: Line 1:
{{subpages}}
In [[statics]] the '''resultant''' of a system of [[force]]s acting at various points on a rigid body or system of particles is a single force, acting at a single point, if one exists, which is equivalent to the given system.
In [[statics]] the '''resultant''' of a system of [[force]]s acting at various points on a rigid body or system of particles is a single force, acting at a single point, if one exists, which is equivalent to the given system.



Revision as of 21:38, 17 February 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In statics the resultant of a system of forces acting at various points on a rigid body or system of particles is a single force, acting at a single point, if one exists, which is equivalent to the given system.

Suppose that forces Fi act at points ri. The resultant would be a single force G acting at a point s. The systems are equivalent if they have the same net force and the same net moment about any point.

These condition are equivalent to requiring that

If , there is no net moment and the conditions are satisfied by taking and s=0.

If , the second condition is soluble only if is perpendicular to . Suppose that this necessary condition is satisfied. It is then the case that an appropriate s can be found.

We conclude that a necessary and sufficient condition for the system of forces to have a resultant is that

References

  • D.A. Quadling; A.R.D. Ramsay (1964). An Introduction to Advanced Mechanics. G. Bell and Sons, 102-103.