Superfunction/Bibliography: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
No edit summary
imported>Dmitrii Kouznetsov
(Not sorted yet. Save to edit by sections.)
Line 1: Line 1:
{{subpages}}
{{subpages}}
==About superfunctions of factorial and <math> \sqrt{!} </math>
About <math>\sqrt{!}</math>
About <math>\sqrt{!}</math>
<ref name="logo">Logo of the Physics Department of the Moscow State University. (In Russian);
<ref name="logo">Logo of the Physics Department of the Moscow State University. (In Russian);
http://zhurnal.lib.ru/img/g/garik/dubinushka/index.shtml
http://zhurnal.lib.ru/img/g/garik/dubinushka/index.shtml
</ref><ref name="kandidov">
</ref>
 
==About superfunctions of exponentias and <math> \sqrt{\exp} </math>==
 
Tetration for base <math>b\!=\!\mathrm{e}</math>
<ref name="kneser">
H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”.
Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
</ref>
<ref name="k">D.Kouznetsov. Solutions of <math>F(z+1)=\exp(F(z))</math> in the complex <math>z</math>plane. [[Mathematics of Computation]], 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf</ref>
 
Tetration for base <math>b\!=\!2</math>
<ref name="k2">D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008.
http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf</ref>.
 
Linear and piece-vice approximation of tetration
<ref name="uxp">
M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and
Special Functions 17 (8), 549-558 (2006)</ref>
 
Application of tetration <ref>
P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics
of computation, 196 (1991), 723-733.
</ref>
<ref name="uxp">
M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and
Special Functions 17 (8), 549-558 (2006)
</ref>
<ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen
99(1928), 118-133</ref>
<ref name="k2">
D.Kouznetsov. Ackermann functions of complex argument. In preparation;
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf
</ref>.
 
<ref name="k2">
D.Kouznetsov. Ackermann functions of complex argument. In preparation;
Preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf
</ref>.
 
==Additional literature around==
Reiterated exponential
<ref>A.Knoebel. ”Exponentials Reiterated.” Amer. Math. Monthly 88 (1981), 235-252.</ref>.
 
Ackermann Function
<ref name="a"> W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen
99(1928), 118-133</ref>
 


==References==
<references/>
<references/>

Revision as of 01:03, 14 August 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
A list of key readings about Superfunction.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

==About superfunctions of factorial and

About [1]

About superfunctions of exponentias and

Tetration for base [2] [3]

Tetration for base [4].

Linear and piece-vice approximation of tetration [5]

Application of tetration [6] [5] [7] [4].

[4].

Additional literature around

Reiterated exponential [8].

Ackermann Function [7]


  1. Logo of the Physics Department of the Moscow State University. (In Russian); http://zhurnal.lib.ru/img/g/garik/dubinushka/index.shtml
  2. H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
  3. D.Kouznetsov. Solutions of in the complex plane. Mathematics of Computation, 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
  4. 4.0 4.1 4.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008. http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content
  5. 5.0 5.1 M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006) Cite error: Invalid <ref> tag; name "uxp" defined multiple times with different content
  6. P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
  7. 7.0 7.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
  8. A.Knoebel. ”Exponentials Reiterated.” Amer. Math. Monthly 88 (1981), 235-252.