Error function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(subpages)
mNo edit summary
 
Line 13: Line 13:


:<math>F(x;\mu,\sigma)=\frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{x-\mu}{\sigma\sqrt{2}} \right) \right].
:<math>F(x;\mu,\sigma)=\frac{1}{2} \left[ 1 + \operatorname{erf} \left( \frac{x-\mu}{\sigma\sqrt{2}} \right) \right].
</math>
</math>[[Category:Suggestion Bot Tag]]

Latest revision as of 11:00, 13 August 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, the error function is a function associated with the cumulative distribution function of the normal distribution.

The definition is

The complementary error function is defined as

The probability that a normally distributed random variable X with mean μ and variance σ2 exceeds x is