Minima and maxima

From Citizendium
Revision as of 18:27, 17 January 2008 by imported>Igor Grešovnik (→‎Minimum: maximum - definition)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, minima and maxima, known collectively as extrema, are the or smallest value (minimum) largest value (maximuml), that a function takes in a point either within a given neighbourhood (local extremum) or on the whole function domain (global extremum).

Definition

Minimum

A real-valued function f is said to have a local minimum at the point x*, if there exists some ε > 0, such that f(x*) ≤ f(x) whenever |xx*| < ε. The value of the function at this point is called minimum of the function.

The definition of a local maximum is similar, only with the ≥ sign in place of ≤.

See also