Monogenic field

From Citizendium
Revision as of 06:00, 21 September 2024 by Suggestion Bot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a monogenic field is an algebraic number field for which there exists an element a such that the ring of integers OK is a polynomial ring Z[a]. The powers of such a element a constitute a power integral basis.

In a monogenic field K, the field discriminant of K is equal to the discriminant of the minimal polynomial of α.

Examples

Examples of monogenic fields include:

  • Quadratic fields: if with a square-free integer then where if d≡1 (mod 4) and if d≡2 or 3 (mod 4).
  • Cyclotomic fields: if with a root of unity, then .

Not all number fields are monogenic: Dirichlet gave the example of the cubic field generated by a root of the polynomial .

References