Superfunction/Bibliography

From Citizendium
< Superfunction
Revision as of 01:03, 14 August 2009 by imported>Dmitrii Kouznetsov (Not sorted yet. Save to edit by sections.)
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
A list of key readings about Superfunction.
Please sort and annotate in a user-friendly manner. For formatting, consider using automated reference wikification.

==About superfunctions of factorial and

About [1]

About superfunctions of exponentias and

Tetration for base [2] [3]

Tetration for base [4].

Linear and piece-vice approximation of tetration [5]

Application of tetration [6] [5] [7] [4].

[4].

Additional literature around

Reiterated exponential [8].

Ackermann Function [7]


  1. Logo of the Physics Department of the Moscow State University. (In Russian); http://zhurnal.lib.ru/img/g/garik/dubinushka/index.shtml
  2. H.Kneser. “Reelle analytische L¨osungen der Gleichung '('(x)) = ex und verwandter Funktionalgleichungen”. Journal f¨ur die reine und angewandte Mathematik, 187 (1950), 56-67.
  3. D.Kouznetsov. Solutions of in the complex plane. Mathematics of Computation, 2008, in press; preprint: http://www.ils.uec.ac.jp/~dima/PAPERS/analuxp99.pdf
  4. 4.0 4.1 4.2 D.Kouznetsov. Ackermann functions of complex argument. Preprint of the Institute for Laser Science, UEC, 2008. http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann.pdf Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content Cite error: Invalid <ref> tag; name "k2" defined multiple times with different content
  5. 5.0 5.1 M.H.Hooshmand. ”Ultra power and ultra exponential functions”. Integral Transforms and Special Functions 17 (8), 549-558 (2006) Cite error: Invalid <ref> tag; name "uxp" defined multiple times with different content
  6. P.Walker. Infinitely differentiable generalized logarithmic and exponential functions. Mathematics of computation, 196 (1991), 723-733.
  7. 7.0 7.1 W.Ackermann. ”Zum Hilbertschen Aufbau der reellen Zahlen”. Mathematische Annalen 99(1928), 118-133
  8. A.Knoebel. ”Exponentials Reiterated.” Amer. Math. Monthly 88 (1981), 235-252.