Spectral sequence
Jump to navigation
Jump to search
Spectral sequences were invented by Jean Leray as an approach to computing sheaf cohomology.
Historical development
Definition
A (cohomology) spectral sequence (starting at ) in an abelian category consists of the following data:
- A family of objects of defined for all integers and
- Morphisms that are differentials in the sense that , so that the lines of "slope" in the lattice form chain complexes (we say the differentials "go to the right")
- Isomorphisms between and the homology of at the spot : :
Convergence
Examples
- The Leray spectral sequence
- The Grothendieck spectral sequence