Littlewood polynomial

From Citizendium
Revision as of 15:12, 27 October 2008 by imported>Richard Pinch (New article, my own wording from Wikipedia)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, a Littlewood polynomial is a polynomial all of whose coefficients are +1 or −1. Littlewood's problem asks how large the values of such a polynomial must be on the unit circle in the complex plane. The answer to this would yield information about the autocorrelation of binary sequences. They are named for J. E. Littlewood who studied them in the 1950s.

Definition

A polynomial

is a Littlewood polynomial if all the . Let ||p|| denote the supremum of |p(z)| on the unit circle. Littlewood's problem asks for constants c1 and c2 such that there are infinitely many pn , of increasing degree n, such that

The Rudin-Shapiro polynomials provide a sequence satisfying the upper bound with . No sequence is known (as of 2008) which satisfies the lower bound.

See also

References

Template:Math-stub