P-adic metric

From Citizendium
Revision as of 15:57, 1 November 2008 by imported>Richard Pinch (new entry, just a stub)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The p -adic metric, with respect to a given prime number p, on the field Q of rational numbers is a metric which is a valuation on the field.

Definition

Every non-zero rational number may be written uniquely in the form where r and s are integers coprime to p and n is an integer. We define the p-adic valuation on Q by

The p-adic metric is then defined by

Properties

The p-adic metric on Q is not complete: the p-adic numbers are the corresponding completion.

Ostrowksi's Theorem

The p-adic metrics and the usual absolute value on Q are mutually inequivalent. Ostrowkski's theorem states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.