Space (mathematics)

From Citizendium
Revision as of 14:10, 7 July 2009 by imported>Boris Tsirelson (→‎Modern approach: link)
Jump to navigation Jump to search

Modern approach

Nowadays mathematics uses a wide assortment of spaces. Many of them are quite far from the ancient geometry. Here is a rough and incomplete classification according to the applicable questions (rather than answers). We start with a basic class.

Space Stipulates
Topological Convergence, continuity. Open sets, closed sets.

Straight lines are defined in projective spaces. In addition, all questions applicable to topological spaces apply also to projective spaces, since each projective space (over the reals) "downgrades" to the corresponding topological space. Such relations between classes of spaces are shown below.

Space Is richer than Stipulates
Projective Topological space. Straight lines.
Affine Projective space. Parallel lines.
Linear Affine space. Origin. Vectors.
Linear topological Linear space. Topological space.
Metric Topological space. Distances.
Normed Linear topological space. Metric space.
Inner product Normed space. Angles.
Euclidean Affine space. Metric space. Angles.

A finer classification uses answers to some (applicable) questions.

Space Special cases Properties
Linear three-dimensional Basis of 3 vectors.
finite-dimensional A finite basis.
Metric complete All Cauchy sequences converge.
Topological compact Every open covering has a finite sub-covering.
connected Only trivial open-and-closed sets.
Normed Banach Complete.
Inner product Hilbert Complete.

Waiving distances and angles while retaining volumes (of geometric bodies) one moves toward measure theory and the corresponding spaces listed below. Besides the volume, a measure generalizes area, length, mass (or charge) distribution, and also probability distribution, according to Andrei Kolmogorov's approach to probability theory.

Space Stipulates
Measurable Measurable sets and functions.
Measure Measures and integrals.

Measure space is richer than measurable space. Also, Euclidean space is richer than measure space.

Space Special cases Properties
Measurable standard Isomorphic to a Polish space with the Borel σ-algebra.
Measure standard Isomorphic mod 0 to a Polish space with a finite Borel measure.
σ-finite The whole space is a countable union of sets of finite measure.
finite The whole space is of finite measure.
Probability The whole space is of measure 1.

These spaces are less geometric. In particular, the idea of dimension, applicable to topological spaces, therefore to all spaces listed in the previous tables, does not apply to measure spaces. Manifolds are much more geometric, but they are not called spaces. In fact, "spaces" are just mathematical structures (as defined by Nikolas Bourbaki) that often (but not always) are more geometric than other structures.