Levi-Civita symbol

From Citizendium
Revision as of 19:09, 2 January 2011 by imported>Peter Schmitt (rewritten - removed: L-C tensor (separate page))
Jump to navigation Jump to search
This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Levi-Civita symbol, usually denoted as εijk, is a conventional abbreviation (similar to the Kronecker delta δij). It equals either 1, −1, or 0 depending on the values (1, 2, or 3) taken by the indices i, j, and k. It is

  • equal to 1, if the indices are pairwise distinct and in cyclic order,
  • equal to −1, if the indices are pairwise distinct but not in cyclic order, and
  • equal to 0, if two of the indices are equal.

Thus

Remarks:

The symbol changes sign whenever two of the indices are interchanged.

The Levi-Civita symbol is a special case (for n=3, because it involves three indices) of a more general notion:
   It equals the sign of the permutation (ijk). Therefore it is also called (Levi-Civita) permutation symbol.

The Levi-Civita symbol is used in the definiton of the Levi-Civita tensor that is also denoted as denoted as εijk.

Both the symbol and the tensor are named after the Italian mathematician and physicist Tullio Levi-Civita.