Metric space

From Citizendium
Revision as of 20:27, 17 December 2007 by imported>Wlodzimierz Holsztynski (→‎Introduction)
Jump to navigation Jump to search
This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Introduction

In mathematics, a metric space is, roughly speaking, an abstract mathematical structure that generalizes the notion of a Euclidean space which has been equipped with the Euclidean distance, to more general classes of sets such as a set of functions. The notion of a metric space consists of two components, a set and a metric in that set. In a metric space, the metric replaces the Euclidean distance as a notion of "distance" between any pair of elements in its associated set (for example, as an abstract distance between two functions in a set of functions) and induces a topology in the set called the metric topology.

Metric in a set

Let be an arbitrary set. A metric on is a function   with the following properties:

  1.   (symmetry)
  2.   (triangular inequality)

It follows from the above three axioms of a metric (also called distance function) that:

  (non-negativity)

Definition of metric space

A metric space is an ordered pair where is a set and is a metric on .

For shorthand, a metric space is usually written simply as once the metric has been defined or is understood.

Metric topology

A metric on a set induces a particular topology on called the metric topology. For any , let the open ball of radius around the point be defined as . Define the collection of subsets of (meaning that ) consisting of the empty set and all sets of the form:

where is an arbitrary index set (can be uncountable) and and for all . Then the set satisfies all the requirements to be a topology on and is said to be the topology induced by the metric . Any topology induced by a metric is said to be a metric topology.

Examples

  1. The "canonical" example of a metric space, and indeed what motivated the general definition of such a space, is the Euclidean space endowed with the Euclidean distance defined by for all .
  2. Consider the set of all real valued continuous functions on the interval with . Define the function by for all . This function is a metric on and induces a topology on often known as the norm topology or uniform topology.
  3. Let be any nonempty set. The discrete metric on is defined as if and otherwise. In this case the induced topology is the so called discrete topology.

See also

Topology

Topological space

Normed space


References

1. K. Yosida, Functional Analysis (6 ed.), ser. Classics in Mathematics, Berlin, Heidelberg, New York: Springer-Verlag, 1980