Carmichael number

From Citizendium
Revision as of 20:32, 7 November 2007 by imported>Karsten Meyer (→‎Chernicks Carmichael numbers)
Jump to navigation Jump to search

A Carmichael number is a composite number, who is named after the mathematician Robert Daniel Carmichael. A Carmichael number c satisfies for every integer a, that is divisible by c. A Carmichael number c satisfies also the conrgruence , if . In 1994 Pomerance, Alford and Granville proved that there exist infinitely many Carmichael numbers.

Properties of a Carmichael number

Every Carmichael number is an Euler pseudoprime. Every abolute Euler pseudoprime is a Carmichael number. A Carmichael number is squarefree and every Carmichael number has three different prime factors or more. Every Carmichael number c satisfies for every of his prime factors that is divisible by .

Chernicks Carmichael numbers

J. Chernick found in 1939 a way to construct Carmichael numbers[1]. If, for a natural number n, the three numbers 6n+1, 12n+1 and 18n+1 are prime numbers, the product is a Carmichael number. Equivalent to this is that if m, 2m-1 and 3m-2 are prime numbers, then the product is a Carmichael number.

References and notes

Further reading