Genus field

From Citizendium
Revision as of 15:13, 28 October 2008 by imported>Richard Pinch (New article, my own wording from Wikipedia)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In algebraic number theory, the genus field G of a number field K is the maximal abelian extension of K which is obtained by composing an absolutely abelian field with K and which is unramified at all finite primes of K. The genus number of K is the degree [G:K] and the genus group is the Galois group of G over K.

If K is itself absolutely abelian, the genus field may be described as the maximal absolutely abelian extension of K unramified at all finite primes.

See also

References

Template:Numtheory-stub