NMR spectroscopy/Catalogs/Nuclear Magnetic Resonance spectroscopy experiments: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David E. Volk
No edit summary
imported>David E. Volk
No edit summary
Line 307: Line 307:
<td> Correlate heteroatom and attached proton</td>
<td> Correlate heteroatom and attached proton</td>
<td> very sensitive</td>
<td> very sensitive</td>
<td> John, et al.<ref name=John>{{cite journal | author = John, Plant & Hurd | title = Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters | journal = J. Magn. Reson., Series A | volume = A101 | pages = 113-117 | year = 1993 }}</ref>
<td> Bodenhausen & Ruben,
<ref name=Ruben>{{cite journal | author = Bodenhausen, G. & Ruben, D.J. | journal = Chem. Phys. Lett. | volume = 69 | pages = 185-188 | year = 1980 }}</ref>
John, et al.<ref name=John>{{cite journal | author = John, Plant & Hurd | title = Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters | journal = J. Magn. Reson., Series A | volume = A101 | pages = 113-117 | year = 1993 }}</ref>
  & Kay et al.<ref name=KayKeiffer>{{cite journal | author = Kay, Keiffer and Saarinen |title = Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity | journal = J. Am. Chem. Soc. | volume = 114 | pages = 10663-10665 | year = 1992 }}</ref></td>
  & Kay et al.<ref name=KayKeiffer>{{cite journal | author = Kay, Keiffer and Saarinen |title = Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity | journal = J. Am. Chem. Soc. | volume = 114 | pages = 10663-10665 | year = 1992 }}</ref></td>
</tr>
</tr>

Revision as of 15:37, 12 July 2007

Nuclear Magnetic Resonance experiments can have multiple variations added, such as form of solvent suppression, sensitivity enhancement, form of inversion or soft pulses, decoupling schemes and so on. This list refers to the basic form of the experiment and references, in general, but not always, are made to the earliest published form of the experiment.

These experiments have been separated into those generally used for solution Nuclear Magnetic Resonance (NMR) spectroscopy, magnetic resonance imaging spectroscopy (MRI) and solid-state NMR spectroscopy.

Atom notation key

Atom NameDescription
Calpha carbon of current amino acid
Calpha carbon of the previous amino acid
Cbeta carbon of current amino acid
Cbeta carbon of the previous amino acid
COcarbonyl carbon of the current amino acid
CO-1carbonyl carbon of the previous amino acid
Cany carbon of the previous amino acid
Halpha proton of current amino acid
Halpha proton of the previous amino acid
HNamide proton
NHamide nitrogen
Hany proton of the current amino acid
Hany proton of the previous amino acid

NMR experiments - solution

NMR Experiment NameAtoms Observed Common UseWeaknessesReference(s)
APT 13C seperate C, CH, CH2 and CH3 carbon detection Patt & Schoolery [1]
CBCA(CO)NH HN, NH, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [2]
CBCANH HN, NH, C, C, C, C Protein NMR assignments Hn exchange Grzesiek & Bax [3]
COSY Hi, Hi-1, Hi+1 Correlate neighboring protons signal overlap Bax and Freeman [4]
DEPT (13C-DEPT) 13C Differentiate CH, CH2 and CH3 don't observe quaternary 13C Bendell, Doddrell & Pegg [5]
HACAHB H, C, H Selective COSY water signal overlaps some H Grzesiek et al. [6]
HBHA(CO)NH HN, NH, H, H Previous alpha/beta protons Hn exchange Grzesiek & Bax [7]
HBCBCACOCAHA H, C, C, CO Protein NMR assignments 13C relaxation Lewis Kay [8]
HBCBCACONNH H, C, C, NH+1, HN+1 Protein NMR Assignments Hn exchange Grzesiek and Bax [2]
(HB)CB(CGCD)HD C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [9]
(HB)CB(CGCDCE)HE C and H of aromatic residues Protein NMR Assignments 13C relaxation Yamazaki, Forman-Kay & Kay [9]
(HCA)CO(CA)NH HN, NH, CO, CO-1 Protein NMR assignments Hn exchange Lohr and Ruterjans[10]
HCACOCAN CO, C, H, HN, HN+1, NH, NH+1 Protein NMR assignments Hn exchange Lohr and Ruterjans [10]
HCAN H, C, NH, NH+1 Protein NMR Assignments water signal overlap Powers et al. [11]
HCCH_TOCSY (Hi-Ci) ---> H Assign entire spin systems signal overlap, 13C relaxation Clore & Gronenborn [12]
H(CCO)NH HN, NH, H Proteins: correlate proton spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [13]
(H)C(CO)NH HN, NH, Cx-1 Proteins: correlate carbon spin system to next amide group Hn exchange Grzesiek, Anglister & Bax [13]
HETCOR Hi, Ci similar to HSQC carbon detection -
HMBC Hi, Cj,k,l,m long-range C-H correlations, aromatic ring assignments low signal, weak J couplings used Bax & Summers [14]
HNCA HN, NH, C, C Sequential alpha carbons weak Ca-1, Hn exchange Kay, Ikura, Tschudin & Bax [15]
HNCACB HN, NH, C, C, C, C Sequential alpha/beta carbons weak C,C signals, Hn exchange Wittekind & Mueller [16]
HN(CA)COHN, NH, CO, CO-1 Sequential carbonyl carbons weak CO-1 signals, Hn exchange Yamazaki, Lee, et al. [17]
HN(CA)HA HN, NH, H, H Sequential alpha protons H overlap and water signals Kay et al. [18]
HN(C)N HN,NH, NH-1 Amide to previous nitrogen Hn exchange Panchal, Bhavesh & Hosur [19]
HN(CA)NNH NH, HN, NH-1, NH+1 Sequential Protein amide groups 13C relaxation, HN exchange Weisemann, Ruterjans & Bermel [20]
H(NCA)NNH NH, HN, HN-1,HN+1 Sequential Protein amide groups weak CO-1 signals, Hn exchange Weisemann, Ruterjans & Bermel[20]
HNCO HN, NH, CO-1 Carbonyl carbon assignments Hn exchange Ikura, Kay & Bax [21]
HN(CO)CA HN, NH, C Assign previous alpha carbon Hn exchange Yamazaki, Lee, et al.[17]
HN(CO)CACB HN, NH, C, C Previous alpha/beta carbons Hn exchange -
HN(COCA)CB HN, NH, C Previous beta carbons Hn exchange Wittekind & Mueller [16]
(HN)CO(CO)NH HN, NH, CO, CO-1 Previous alpha/beta carbons C relaxation Bax & Grzesiek[22]
HN(CO)HAHN, NH, HPrevious alpha proton Hn exchange -
HN(CO)HB HN, NH, H CO-H coupling Hn exchange Grzesiek, Ikura et al. [23]
HNHA HN, NH, H alpha protons & -backbone angles water peak Vuister & Bax [24]
HNHB HN, NH, H, H (N-H J-coupling) Hn exchange Archer et al. [25]
HNHHN(i,i-1,i+1), NH(i,i-1,i+1)Sequential beta protons & backbone anglesweak Ca/Cb-1 signals, Hn exchange -
HNN HN,NH, NH-1, NH+1 Amide to sequential nitrogens Hn exchange Panchal, Bhavesh & Hosur [19]
HSQC Hi, Xi Correlate heteroatom and attached proton very sensitive Bodenhausen & Ruben,

[26]

John, et al.[27]
& Kay et al.[28]
LRCC Methionine C/H---> C and C Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[29]
LRCH Methionine C/H---> H Assign Methionine methyls, chi3 angles high sensitivity Bax, Delaglio et al.[29]
NOESY Hi, Hx 1H-1H distance structure determinations Kumar, Ernst & Wuthrich

[30] [31]

ROESY Hi, Hx 1H-1H distance rotating frame, works for small molecules Hwang & Shaka

[32] [33]

TOCSY Hi----> H Assign entire H1 spin systems signal overlap Bax & Davis [34]
WATERGATE Protons Solvent suppression - Piotto, Saudek & Sklenar [35]

NMR experiments - MRI

NMR experiments - solid-state

References

  1. Patt, S.L. & Schoolery, J.N. (1982). "Attached Proton Test for Carbon-13 NMR". J. Magn. Reson. 46: 535-539.
  2. 2.0 2.1 Grzesiek, S. & Bax, A. (1992). "Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR". J. Am. Chem. Soc. 114: 6291-6293.
  3. Grzesiek, S. & Bax, A. (1992). "An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins". J. Magn. Reson. 99: 201-207.
  4. Bax, A. & Freeman, R. (1981). "Investigation of complex networks of spin-spin coupling by two-dimensional NMR". J. Magn. Reson. 44: 542-561.
  5. Bendrell, M.R., Doddrell, D.M. & Pegg, D.T. (1981). "{{{title}}}". J. Am. Chem. Soc. 103: 4603-4605.
  6. Grzesiek, S., Kuboniwa, H., Hinck, A.P. & Bax, A. (1995). "Multiple-Quantum Line Narrowing for Measurement of H-H J Couplings in Isotopically Enriched Proteins". J. Am. Chem. Soc. 117: 5312-5315.
  7. Grzesiek, S. & Bax, A. (1993). "Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins". J. Biomol. NMR 3: 185-204.
  8. Kay, L. E. (1993). "Pulsed-field gradient-enhanced three-dimensional NMR experiment for correlating 13C/, 13C', and 1H chemical shifts in uniformly 13C-labeled proteins dissolved in water". J. Am. Chem. Soc. 115: 2055-2057.
  9. 9.0 9.1 Yamazaki, T., Forman-Kay, J. D. & Kay, L. E. (1994). "Two-dimensional NMR experiments for correlating 13C and 1H/ chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings". J. Am. Chem. Soc. 115: 11054-11055.
  10. 10.0 10.1 Lohr, F. and Ruterjans, H. (1995). "A new triple-resonance experiment for the sequential assignment of backbone resonances in proteins". J. Biomol. NMR 6: 189-197.
  11. Powers, R., Gronenborn, A.M., Clore, G.M. and Bax, A. (1991). "Three-dimensional Triple-Resonance NMR of 13C/15N-Enriched Proteins Using Constant-Time Evolution". J. Magn. Reson. 94: 209-213.
  12. Clore, G. M. & Gronenborn, A. M. (1994). "Multidimensional heteronuclear nuclear magnetic resonance of proteins". Meth. Enzymol. 239: 249-363.
  13. 13.0 13.1 Grzesiek, S., Anglister, J. & Bax, A. (1993). "Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-enriched Proteins by Isotopic Mixing of 13C Magnetization". J. Magn. Reson. Series B B101: 114-119.
  14. Bax, A. & Summers, M.F. (1986). "Proton and Carbon-13 assigments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR". J. Am. Chem. Soc. 108: 2093-2094.
  15. Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990). "Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins". J. Magn. Reson. 89: 296.
  16. 16.0 16.1 Wittekind, M. & Mueller, L. (1993). "HNCACB, a High-Sensitivy 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins". J. Magn. Reson., Series B. B101: 201-205.
  17. 17.0 17.1 Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994). "A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity". J. Am. Chem. Soc. 116: 11655-11666.
  18. Kay, L. E., Wittikind, M., McCoy, M. A., Friedrichs, M. S. and Mueller, L. (1992). "4D NMR Triple-Resonance Experiments for Assignment of Protein Backbone Nuclei Using Shared Constant-Time Evolution Periods". J. Magn. Reson. 98: 443-450.
  19. 19.0 19.1 Panchal, SC, Bhavesh, NS & Hosur, RV (2001). "Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins". J. Biomol. NMR 20: 135-147.
  20. 20.0 20.1 Weisemann, R., Ruterjans, H. & Bermel, W. (1993). "3d Triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N- and 13C-labelled proteins". J. Biomol. NMR 3: 113-120.
  21. Ikura, M., Kay, L. E. and Bax, A. (1990). "A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin". Biochemistry 29: 4659-4667.
  22. Grzesiek, S. & Bax, A. (1997). "A three-dimensional NMR experiment with improved sensitivity for carbonyl-carbonyl J correlation in proteins". J. Biomol. NMR 9: 207-211.
  23. Grzesiek, S., Ikura, M., Clore, G.M., Gronenborn, A.M. & Bax, A. (1992). "A 3D Triple-Resonance Technique for Qualitative Measurement of Carbonyl-H J Couplings in Isotopically Enriched Proteins". J. Magn. Reson. 96: 215-221.
  24. Vuister, G.W. & Bax, A. (1993). "Quantitative J correlation: a new approach for measuring homonuclear three-bond J(HNH.alpha.) coupling constants in 15N-enriched proteins". J. Am. Chem. Soc. 115: 7772-7777.
  25. Archer, S.J., Ikura, M., Torchia, D.A. & Bax, A. (1991). "An Alternative 3D NMR Technique for Correlating Backbone 15N with Side Chain H Resonances in Larger Proteins". J. Magn. Reson. 95: 636-641.
  26. Bodenhausen, G. & Ruben, D.J. (1980). "{{{title}}}". Chem. Phys. Lett. 69: 185-188.
  27. John, Plant & Hurd (1993). "Improved proton-detected heteronuclear correlation using gradient-enhanced Z and ZZ filters". J. Magn. Reson., Series A A101: 113-117.
  28. Kay, Keiffer and Saarinen (1992). "Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity". J. Am. Chem. Soc. 114: 10663-10665.
  29. 29.0 29.1 Bax, A., Delaglio, F., Grzesiek, S. and Vuister, G.W. (1994). "Resonance assignment of methionine methyl groups and 3 angular information from long-range proton-carbon and carbon-carbon J correlation in a calmodulin-peptide complex". J. Biomol. NMR 4: 787-797.
  30. Kumar, A., Ernst, R.R. & Wuthrich, K. (1980). "A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules". Biochem. Biophys. Res. Commun. 95: 1-6.
  31. Macura, S. & Ernst, R.R. (1980). "Elucidiation of cross relaxation in liquids by two-dimensional NMR spectroscopy". Mol. Phys. 41: 95-117.
  32. Hwang, T.L. & Shaka, A.J. (1992). "Cross relaxation without TOCSY: Transverse rotating-frame Overhauser effect spectroscopy". J. Am. Chem. Soc. 114: 3157-3159.
  33. Hwang, T.L. & Shaka, A.J. (1993). "Reliable two-dimensional rotating-frame cross-relaxation measurements in coupled spin systems". J. Magn. Reson. Series B B102: 155-165.
  34. Bax, A. and Davis, D. (1985). "MLEV-17 based two-dimensional homonuclear megnetization transfer spectroscopy". J. Magn. Reson. 65: 355-360.
  35. Piotto, M., Saudek, V. and Sklenar, V. (1992). "Gradient-tailored Excitation for Single-quantum NMR Spectroscopy of Aqueous Solutions". J. Biomol. NMR 2: 661.