Vector identities
From Citizendium
Jump to navigation
Jump to search
Main Article
Discussion
Definition
[?]
Related Articles
[?]
Bibliography
[?]
External Links
[?]
Citable Version
[?]
This editable Main Article is
under development
and subject to a
disclaimer
.
[
edit intro
]
a
→
×
b
→
=
−
b
→
×
a
→
{\displaystyle {\vec {a}}\times {\vec {b}}=-{\vec {b}}\times {\vec {a}}}
a
→
⋅
(
b
→
×
c
→
)
=
b
→
⋅
(
c
→
×
a
→
)
=
c
→
⋅
(
a
→
×
b
→
)
{\displaystyle {\vec {a}}\cdot \left({{\vec {b}}\times {\vec {c}}}\right)={\vec {b}}\cdot \left({{\vec {c}}\times {\vec {a}}}\right)={\vec {c}}\cdot \left({{\vec {a}}\times {\vec {b}}}\right)}
a
→
×
(
b
→
×
c
→
)
=
(
a
→
⋅
c
→
)
b
→
−
(
a
→
⋅
b
→
)
c
→
{\displaystyle {\vec {a}}\times \left({{\vec {b}}\times {\vec {c}}}\right)=({\vec {a}}\cdot {\vec {c}}){\vec {b}}-({\vec {a}}\cdot {\vec {b}}){\vec {c}}}
(
a
→
×
b
→
)
⋅
(
c
→
×
d
→
)
=
(
a
→
⋅
c
→
)
(
b
→
⋅
d
→
)
−
(
a
→
⋅
d
→
)
(
b
→
⋅
c
→
)
{\displaystyle ({\vec {a}}\times {\vec {b}})\cdot ({\vec {c}}\times {\vec {d}})=({\vec {a}}\cdot {\vec {c}})({\vec {b}}\cdot {\vec {d}})-({\vec {a}}\cdot {\vec {d}})({\vec {b}}\cdot {\vec {c}})}
∇
×
∇
ψ
=
0
{\displaystyle \nabla \times \nabla \psi =0}
∇
⋅
(
∇
×
a
→
)
=
0
{\displaystyle \nabla \cdot \left({\nabla \times {\vec {a}}}\right)=0}
∇
×
(
∇
×
a
→
)
=
∇
(
∇
⋅
a
→
)
−
∇
2
a
→
{\displaystyle \nabla \times \left({\nabla \times {\vec {a}}}\right)=\nabla \left({\nabla \cdot {\vec {a}}}\right)-{\nabla }^{2}{\vec {a}}}
∇
⋅
(
ψ
a
→
)
=
a
→
⋅
∇
ψ
+
ψ
∇
⋅
a
→
{\displaystyle \nabla \cdot \left({\psi {\vec {a}}}\right)={\vec {a}}\cdot \nabla \psi +\psi \nabla \cdot \left.{\vec {a}}\right.}
∇
×
(
ψ
a
→
)
=
∇
ψ
×
a
→
+
ψ
∇
×
a
→
{\displaystyle \nabla \times \left({\psi {\vec {a}}}\right)=\nabla \psi \times {\vec {a}}+\psi \nabla \times \left.{\vec {a}}\right.}
∇
(
a
→
⋅
b
→
)
=
(
a
→
⋅
∇
)
b
→
+
(
b
→
⋅
∇
)
a
→
+
a
→
×
(
∇
×
b
→
)
+
b
→
×
(
∇
×
a
→
)
{\displaystyle \nabla \left({{\vec {a}}\cdot {\vec {b}}}\right)=\left({{\vec {a}}\cdot \nabla }\right){\vec {b}}+\left({{\vec {b}}\cdot \nabla }\right){\vec {a}}+{\vec {a}}\times \left({\nabla \times {\vec {b}}}\right)+{\vec {b}}\times \left({\nabla \times {\vec {a}}}\right)}
∇
⋅
(
a
→
×
b
→
)
=
b
→
⋅
(
∇
×
a
→
)
−
a
→
⋅
(
∇
×
b
→
)
{\displaystyle \nabla \cdot \left({{\vec {a}}\times {\vec {b}}}\right)={\vec {b}}\cdot \left({\nabla \times {\vec {a}}}\right)-{\vec {a}}\cdot \left({\nabla \times {\vec {b}}}\right)}
∇
×
(
a
→
×
b
→
)
=
a
→
(
∇
⋅
b
→
)
−
b
→
(
∇
⋅
a
→
)
+
(
b
→
⋅
∇
)
a
→
−
(
a
→
⋅
∇
)
b
→
{\displaystyle \nabla \times \left({{\vec {a}}\times {\vec {b}}}\right)={\vec {a}}\left({\nabla \cdot {\vec {b}}}\right)-{\vec {b}}\left({\nabla \cdot {\vec {a}}}\right)+\left({{\vec {b}}\cdot \nabla }\right){\vec {a}}-\left({{\vec {a}}\cdot \nabla }\right){\vec {b}}}
References
Categories
:
CZ Live
Mathematics Workgroup
Articles written in British English
All Content
Mathematics Content
Hidden category:
Mathematics tag
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
English
Views
Read
View source
View history
ZWI Export
More
Search
Read
Welcome to Citizendium
Citable Articles
All Articles
Random Article
All Recent Changes
About Us
Introduction
FAQ
Policies
Governance
Contact Us
Enquiries
Apply to Join
Personnel
How To
Forum
Start Article
Article Mechanics
How to Edit
Help
More Help
Finance
Financial Report
Donate
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
Cite this page